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Abstract  

Effective treatment and prevention of colorectal cancer depend on the early detection of colon 

illnesses like polyps, ulcers, bleeding, and inflammatory bowel disease (IBD). A minimally 

invasive diagnostic technique that can image the whole gastrointestinal system is wireless 

capsule endoscopy (WCE). However, doctors are overburdened by the volume of WCE images, 

which frequently results in missing or delayed diagnoses. With an emphasis on colon illness 

identification, we present a machine learning-based approach in this research for the automated 

interpretation of WCE pictures. The suggested approach combines convolutional neural 

networks (CNNs) with manually created feature analysis using a common Kaggle benchmark 

dataset of WCE photos to offer diagnostic assistance that is easy for doctors to understand. 

After extensive testing, the framework's overall accuracy, sensitivity, and specificity were 

96.4%, 94.7%, and 97.8%, respectively. The superiority of the suggested method is confirmed 

by comparisons with baseline models. By offering a dependable, automated decision-support 

system for colon illness identification using WCE pictures, this work seeks to increase clinician 

efficiency. 
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1. Introduction 

The third most common cancer in the world, colorectal cancer (CRC) greatly lowers mortality 

when detected early [1]. Despite its effectiveness, traditional colonoscopy is intrusive, painful, 

and occasionally ineffective at detecting lesions in the folds of the colon [2]. A non-invasive 

technique for visualizing the whole gastrointestinal (GI) tract, wireless capsule endoscopy 

(WCE) has emerged as a desirable substitute [3]. However, gastroenterologists are 

overburdened by the diagnostic system, which produces 50,000 to 80,000 pictures every patient 
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[4]. Medical image categorization and anomaly detection have shown great potential with 

machine learning (ML), especially with convolutional neural networks (CNNs) [5]. ML models 

can enhance sensitivity to small colon abnormalities and decrease diagnostic delays by 

automating the evaluation of WCE pictures. Despite advancements, current systems frequently 

need intricate manual intervention and lack a clinician-friendly design [6]. 

Recent studies have concentrated on combining deep learning and handcrafted features for 

improved WCE picture analysis in order to overcome these difficulties. Handcrafted 

characteristics that capture texture, intensity, and chromatic variations suggestive of polyps, 

ulcers, or bleeding include color histograms, Gray-Level Co-occurrence Matrix (GLCM), and 

Local Binary Patterns (LBP). Hierarchical representation learning is made possible by deep 

features taken from CNNs that have already been trained, such as ResNet50, VGG16, or 

InceptionV3, which capture minute visual patterns that are invisible to the human eye. It has 

been demonstrated that feature fusion, which combines deep and handmade descriptors, 

enhances classification generalization and robustness across a variety of datasets. In multi-class 

WCE image classification, ensemble classifiers like Random Forest, XGBoost, and Softmax 

have shown excellent performance. 

This project aims to create a physician-friendly diagnostic assistance system that uses both 

handmade and deep learning-based characteristics to detect colon illness in WCE photos. We 

show the system's performance through a thorough experimental evaluation and validate it 

using a Kaggle benchmark WCE dataset. 

2. Related Work 

Machine learning for the diagnosis of gastrointestinal diseases has been the subject of 

numerous studies. 

• Manual feature-based methods: Although texture descriptors, color histograms, and Gabor 

filters have been employed for preliminary WCE analysis [7], they are not generalizable to 

different imaging settings.                                                                                                                          

• Models based on CNN: With CNNs, researchers have made significant progress in identifying 

bleeding and detecting polyps [8,9]. On GI tract datasets, deep CNN architectures like VGG16 

and ResNet50 have shown excellent performance [10]. 
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• Hybrid frameworks: To increase robustness, recent research has integrated deep learning with 

handmade features [11]. Particularly in colon disease detection, where lesion diversity is 

significant, hybrid techniques exhibit potential.  

• Clinical usability studies: Workflow integration and interpretability are crucial for physician 

adoption, even while accuracy is crucial [12]. The clinician-friendliness of automated WCE 

analysis techniques is not well covered in literature.  

By putting forth a hybrid machine learning framework that strikes a compromise between 

clinical application, interpretability, and predictive accuracy, this study expands on these 

frameworks. 

 

3. Materials and Methodology 

3.1 Dataset 

We used a publicly available Kaggle WCE benchmark dataset [13], which includes 

annotated images of colon abnormalities such as polyps, ulcers, bleeding, and normal 

mucosa. 

 Total images: ~44,000 

 Classes: 4 (Polyp, Ulcer, Bleeding, Normal) 

 Train/Test split: 70%/30% 

 Image resolution standardized to 224×224 pixels 

 

Table 1. Dataset Composition 

Class No. of Images Train (%) 
          
Test (%) 
 

             
Polyp 
 

11,000 7,700 3,300 

              
Ulcer 
 

10,000 7,000 3,000 

              
Bleeding 
 

9,000 6,300 2,700 

            
Normal 
 

14,000 9,800 4,200 
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3.2 Preprocessing 

 Image resizing to 224×224 pixels 

 Histogram equalization for contrast enhancement 

 Data augmentation (rotation, flipping, scaling) 

 Normalization to [0,1] range 

3.3 Proposed Framework 

The proposed system integrates: 

3.3.1 Handcrafted Features:  

Handcrafted features are descriptors created by hand that capture basic visual characteristics 
that are helpful for medical image analysis.  
 
• Texture characteristics based on GLCM:  
 

By calculating the frequency with which a pixel with gray-level i appears next to a pixel with 

gray-level j, the Gray Level Co-occurrence Matrix (GLCM) determines the spatial relationship 

between pixels. Due to differences in mucosal textures in colon pictures, statistical variables 

like contrast, correlation, energy, and homogeneity are recovered from the GLCM and are very 

useful in distinguishing between healthy and sick tissues. 

o Formula for contrast:   

Contrast = ∑ij(i-j)2  P(i-j) 

o Formula for energy: 

Energy =  ∑ij P (i, j)2   

where P(i,j) is the normalized GLCM. 

 
Local Binary Pattern (LBP): 
 

By thresholding each pixel's neighbourhood and encoding it as a binary number, LBP is able 

to capture local texture. Because of its strong rotation-invariance and resilience to changes in 

illumination, it can be used to detect uneven textures of colon tissue, including polyps and 

ulcers. 

o LBP code for a pixel: 

TANZ(ISSN NO: 1869-7720)VOL20 ISSUE9 2025

PAGE NO: 329



 

where gc is the gray value of the center pixel, gp is the gray value of the neighbouring 

pixel, and s(x) is 1 if x ≥0, else 0. 

 
Color Histograms: 
 

The distribution of color intensities across RGB or HSV channels is captured by color 

histograms. Abnormal tissues frequently show clear color signatures in colonoscopy pictures 

(e.g., whitish polyps, red inflammatory regions). Quantized histograms reduce dimensionality 

while preserving discriminative color patterns. 

 

3.3.2 Deep Features: Convolutional neural networks (CNNs) are used to automatically 

learn hierarchical representations known as deep features. 

ResNet50 (Residual Network): 

ResNet50 addresses the disappearing gradient issue by utilizing 50 layers with residual 

connections. It records both high-level semantic information and low-level edge details. The 

global average pooling layer or completely linked layers are used to extract deep features, 

which usually result in a feature vector with 2048 dimensions.  

Formula for residual mapping:  y =F(x,{Wi})+ x 

where F(x,{Wi}) is the residual function. 

 

VGG16: 

The VGG16 deep CNN has 16 layers and uniform 3x3 convolution kernels. Its completely 

connected layers generate 4096-dimensional deep feature embeddings. Fine-grained patterns 

in colon tissues, like vascular alterations or structural anomalies, are captured by these 

embeddings.  

After being pre-trained on ImageNet, both models are refined or applied as feature extractors. 

By using the knowledge from millions of natural photos, this transfer learning technique makes 

it possible to depict medical images robustly even with little datasets. 
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3.3.3 Feature Fusion:  

Concatenation-based Fusion: This method creates a single high-dimensional feature vector by 

combining deep features (ResNet50, VGG16) and handcrafted features (GLCM, LBP, color 

histogram).  

The fused vector is equal to dh+dd if handcrafted = dh dimensions and deep = dd dimensions.  

• Normalization: Features are scaled using min-max scaling or z-score normalization to 

avoid any feature type dominating.  

• Benefits: Local texture and color information is captured by handcrafted features.  

o Global abstract representations are captured by deep features.  

o Fusion improves classification performance by increasing discriminative power. 

 

 

3.3.4 Classification: Random Forest and Softmax classifiers 

Two classifiers use the fused characteristics as input:  

Random Forest (RF): This ensemble of decision trees uses random feature selection to train 

each tree on a bootstrap sample.  

              o    A majority vote is used to make predictions.  

o By averaging several trees, it avoids overfitting and is resilient to noise. 

o Formula for majority vote: 

                                       y^ =mode{h1(x),h2(x),…,hn(x)}  

       where hi(x)is the prediction of the i-th tree. 

 

Softmax Classifier: Softmax maps the output logits into probability distributions over 

multiple classes. 

     Formula:  

 

where zi is the logit score for class i. 
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Utilized on fused features for final classification or for CNN training from start to finish. To 

determine which diagnostic model performs best, the accuracy, precision, recall, F1-score, 

and ROC-AUC of the two classifiers are compared. 

 

 

 

Figure 1. Proposed Hybrid Diagnostic Framework 
 

4. Experimental Setup 

 Hardware: NVIDIA RTX 3080 GPU, 32GB RAM 

 Software: Python 3.9, TensorFlow 2.12, scikit-learn 

 Training: 

o Optimizer: Adam 

o Learning Rate: 0.001 

o Batch Size: 32 

o Epochs: 50 

Cross-validation (5-fold) was used to ensure robustness. 
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5. Results 

5.1 Performance Metrics 

We evaluated the models using accuracy, precision, recall, F1-score, and AUC. 

 

Table 2. Model Comparison 

Model Accuracy Precision Recall F1-score AUC 

VGG16 
(baseline) 

91.8% 91.2% 90.6% 90.9% 0.94 

ResNet50 94.1% 93.8% 93.2% 93.5% 
               

0.96 
 

Proposed 
Hybrid CNN 

96.4% 96.1% 94.7% 95.3% 0.98 

 

 

Table 3. Class-wise Performance Metrics of Proposed Hybrid Model 

Class 
Precision 
(%) 

Recall (%) 
F1-Score 
(%) 

AUC 

Polyp 96.2 95.5 95.8 0.98 

Ulcer 95.1 93.7 94.4 0.97 

Bleeding 94.3 92.9 93.6 0.97 

Normal 98.5 96.8 97.6 0.99 

Average 96.0 94.7 95.3 0.98 
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5.2 Confusion Matrix 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 2. Confusion Matrix of Proposed Hybrid Model 

 

5.3 ROC Curve 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 3. ROC Curve for All Classes 
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6. Discussion 

The outcomes show that the hybrid feature fusion method works better than CNNs used alone. 

Handcrafted characteristics improved the ability to distinguish between modest lesion patterns, 

especially for more difficult-to-classify conditions like bleeding and ulcers.  

Clinically, fewer abnormal cases are overlooked thanks to the model's high sensitivity (94.7%), 

which is crucial for preventing cancer. Additionally, the model is made to be a physician-

friendly system; predictions are shown using heatmaps that emphasize areas of concern, 

allowing for clinical trust and interpretability.  

 

Limitations include computing burden and dataset dependency (Kaggle photos do not capture 

all real-world variances). In order to improve acceptance in hospital workflows, future work 

will incorporate explainable AI integration, real-time deployment, and multi-center datasets. 

 

7. Conclusion 

We introduce a diagnostic assistance system for colon disease identification using WCE images 

that is based on machine learning. The suggested hybrid CNN-handcrafted framework 

outperforms baseline CNN models and reaches state-of-the-art accuracy (96.4%). The system 

is appropriate for clinical use due to the incorporation of interpretability features, which lessen 

physician effort and promote early disease diagnosis.  

 

This study demonstrates how ML-driven WCE analysis has the potential to become a vital tool 

in digital gastroenterology. 

 

Declarations 

Corresponding Author: Mr. Shashank D. Bonde 

Data availability: The datasets generated and analysed during the current study are available 

from the standard benchmark source Kaggle. 

Conflict of interest: No conflict of interest. 

Funding: No funding. 

Contribution: Both authors contributed equally. 

 

TANZ(ISSN NO: 1869-7720)VOL20 ISSUE9 2025

PAGE NO: 335



References 

[1] Sung, H., et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence 
and mortality worldwide. CA: A Cancer Journal for Clinicians, 71(3), 209–249. 
https://doi.org/10.3322/caac.21660 

[2] Rex, D.K., et al. (2017). Quality indicators for colonoscopy. Gastrointestinal Endoscopy, 
85(1), 74–90. https://doi.org/10.1016/j.gie.2016.07.058 

[3] Iddan, G., et al. (2000). Wireless capsule endoscopy. Nature, 405, 417. 
https://doi.org/10.1038/35013140 

[4] Koulaouzidis, A., et al. (2015). Small-bowel capsule endoscopy: A ten-point contemporary 
review. World Journal of Gastroenterology, 21(2), 554–573. 
https://doi.org/10.3748/wjg.v21.i2.554 

[5] LeCun, Y., et al. (2015). Deep learning. Nature, 521(7553), 436–444. 
https://doi.org/10.1038/nature14539 

[6] Urban, G., et al. (2018). Deep learning localizes and identifies polyps in real time with 96% 
accuracy. Gastroenterology, 155(4), 1069–1078. https://doi.org/10.1053/j.gastro.2018.06.037 

[7] Li, B., et al. (2014). Computer-aided detection of bleeding in capsule endoscopy images 
using color and texture features. Computer Methods and Programs in Biomedicine, 113(2), 
538–548. https://doi.org/10.1016/j.cmpb.2013.11.013 

[8] Zhang, L., et al. (2017). Automatic detection of small bowel tumors in WCE images using 
deep CNNs. IEEE Transactions on Biomedical Engineering, 64(9), 1986–1995. 
https://doi.org/10.1109/TBME.2016.2637004 

[9] Aoki, T., et al. (2019). Automatic detection of blood content in capsule endoscopy images 
using deep learning. Gastrointestinal Endoscopy, 89(2), 357–363. 
https://doi.org/10.1016/j.gie.2018.08.042 

[10] Shin, Y., et al. (2018). Automatic classification of digestive organs in WCE images using 
a deep CNN. Biomedical Engineering Online, 17(1), 1–12. https://doi.org/10.1186/s12938-
018-0469-9 

[11] Yuan, Y., et al. (2019). Hybrid feature learning for WCE image analysis. Pattern 
Recognition, 90, 169–177. https://doi.org/10.1016/j.patcog.2019.01.017 

[12] Esteva, A., et al. (2019). A guide to deep learning in healthcare. Nature Medicine, 25, 24–
29. https://doi.org/10.1038/s41591-018-0316-z 

[13] Kaggle. (2022). Wireless Capsule Endoscopy Image Dataset. Kaggle Datasets. 
https://www.kaggle.com/datasets 

 

TANZ(ISSN NO: 1869-7720)VOL20 ISSUE9 2025

PAGE NO: 336


