
Implementation of AI-Powered Web Automation for
Educational and Job Portals Using NLP

Madhavi R P
B.M.S College of Engineering

Bengaluru, India
madhavi.cse@bmsce.ac.in

Shreyansh Sethiya
B.M.S College of Engineering

Bengaluru, India
shreyansh.cs22@bmsce.ac.in

Paarth Sanyal
B.M.S College of Engineering

Bengaluru, India
paarth.cs22@bmsce.ac.in

Gopal Agrawal
B.M.S College of Engineering

Bengaluru, India
gopala.cs22@bmsce.ac.in

Mandaar Adarsh
B.M.S College of Engineering

Bengaluru, India
mandaar.cs22@bmsce.ac.in

Abstract—Students and also job hunters report doing the same
things over and over on websites which include checking results,
applying for jobs, or downloading documents. This may be a
challenge for those without great tech know how which in turn
may make it hard for them to use the sites as they should.
We looked at research which looks at the use of AI and tools
like NLP models and Playwright to improve on this. We covered
improvements in identifying what the user wants, creating scripts,
putting together automation frameworks, and in the use of voice
commands. We also look at what is present at present, the issues
we ran into and what we see for the future in making this
automation more accessible.

Index Terms—Web automation, Natural Language Processing,
Playwright, Educational portals, Job portals, Intent recognition,
LLMs.

I. INTRODUCTION

The“AI-Powered Web Automation for Educational and Job
Portals Using NLP” project showcases an intelligent frame-
work developed to aid non-technical individuals, especially
students and job seekers, to navigate intricate websites via sim-
ple natural language instructions. NLP models like GPT and
BERT are contemporarily used to automate the understanding
and generation of user executable scripts via voice commands
to perform monotonous activities such as applying for jobs,
downloading certificates, and submitting forms. Unlike old
automation systems, with Selenium and Puppeteer as the prime
examples, GPT and BERT based NLP systems do not require
the user to know programming or provide scripts to perform
automation.

This issue is that of growing demand for automatic tools
which are easy to use and which do not require in depth
tech knowledge. We have designed it to take simple English
instructions and turn them into live working scripts which in
turn makes tasks go faster and also reduces the chance of error.
We have built the system with robust and flexible technology
which includes Node.js, React.js, Docker and we also use
cloud services like AWS and Azure which in turn makes it
work well with many different websites that which in turn

are very much in a state of change. We use WebSockets for
real time updates which in turn makes the auto process more
interactive and transparent.

This project aims to develop and implement a natural
language processing AI system to fully automate automation
workflows. It will correctly interpret user inputs, compose
flexible scripts using Playwright, permit usage through a web
interface by non-technical users, and ensure compliance to
the Sustainable Development Goals. Specifically, the project
addresses systems improvement for education access concern-
ing SDG 4 Quality Education, automation to enhance work
efficiency for SDG 8 Decent Work and Economic Growth,
and the advancement of universal digital solutions for SDG 9
Industry, Innovation and Infrastructure.

Current tools are limited because they rely on manual proce-
dures to script out domain-specific logic, which means there
is little use of Natural Language Processing for automation
of tasks that are more general in nature. The proposed system
addresses these shortcomings because it provides an intelligent
automation system that is unified and easy enough to use
by non-programmers. It is built as scalable, modular cross-
domain automations, which makes it applicable to real-world
use cases and will be relevant to users across educational and
job portals. As a result, the proposed automation system hopes
to democratized access to advanced automation capabilities
that will improve productivity.

II. LITERATURE REVIEW

The research in AI-powered web automation has progres-
sively evolved from rule-based scripting approaches to in-
telligent systems powered by Natural Language Processing
(NLP) and Large Language Models (LLMs). Early founda-
tional works by researchers such as Rashid et al. (2021), Hadi
et al. (2020), and Sharma and Jain (2021) demonstrated the
integration of NLP models like BERT with automation tools
like Selenium and Playwright. These efforts primarily aimed
to simplify repetitive web tasks—such as form fi...

TANZ(ISSN NO: 1869-7720)VOL20 ISSUE9 2025

PAGE NO: 1

work2
Textbox

work2
Textbox



In 2023 and 2024, new endeavors began to leverage large
language models to develop better tools. The LLM4Jobs
project by Li et al. (2023) worked on auto-extraction of job-
related data that it extracted, and then in 2024, Lai et al.
developed AutoWebGLM that allows computers the freedom
to do the exploring of the worldwide web. These examples
illustrate where natural language processing and ai can provide
assistance in the active use of tasks with very little human
intervention. This fits well with the purpose of the current
project.

While there have been significant advances there are still
challenges. Current systems are restricted to domains of exper-
tise, rely on humans to provide textual instructions, and often
do not adapt well to web based systems that change often.
Older systems, that applied simple logical rules, were often
too rigid. New systems currently are struggling with users
who are unclear when they ask their questions, keeping track
of multi-turn conversations,

The proposed project will fill the research gap since it is
clear from the findings above that current projects do not
provide a comprehensive, scalable, low-code interface that
combines real-time NLP intent detection and translatable script
generation for non-coder audiences. The plan is to create
a cross-domain, AI-integrated web scraping and automation
application that executes natural language commands and
executes Playwright scripts in response to various domains,
including but not limited to, educational and employment
resources.

TABLE I
MAPPING OF OBJECTIVES WITH RESEARCH GAPS

Research Gap Mapped Objective
Absence of integrated NLP-based
automation systems

Develop an AI-powered system
that combines Playwright with
LLMs to enable natural language-
driven automation

Lack of generalization across dy-
namic platforms

Design a framework that adapts to
multiple websites and supports var-
ied tasks like login, scraping, and
submissions

Current systems require scripting
knowledge

Eliminate the need for manual
coding by generating Playwright
scripts dynamically from user input

Limited adaptability to changing
content

Use models like GPT or BERT to
support real-time NLP-based script
generation and flexible web inter-
action

III. METHODOLOGY

This chapter details the process of creating and testing
the web automation tool with AI. It presents the method
by which the research was conducted and subsequently the
findings for the effectiveness of the systems. The research
process contained elements of both qualitative and quantitative
techniques to support need resolution for technology and end-
user experience without programming.

The quantitative is the statistical testing outcomes based on
use of the proposed systems. The qualitative is the problem
identification based on user feedback, assessment of analogous

web automation systems and requirements based on real world
exposure.We also found the limitations of existing appli-
cations, Selenium and Puppeteer, based on nonprogrammer
access.

The quantitative aspect of the methodology involves the
implementation and experimental validation of the system
using NLP models like GPT and BERT. Several performance
metrics were used to evaluate the system, including:

• Intent Recognition Accuracy: The ability of the NLP
module to correctly interpret and classify user instruc-
tions.

• Script Execution Success Rate: The percentage of
Playwright-generated scripts that successfully completed
the intended web automation tasks.

• Task Completion Time: The average time taken to
complete automated tasks compared to manual execution.

• User Effort Reduction: Measured by the reduction in
the number of manual steps required for each task.

• Error Rate: Incidences of failure due to incorrect inter-
pretation or incomplete automation flows.

In order to validate that the results were valid and possibly
generalized in other contexts, a number of job and education
websites and pages (which included fictitious job listing sites,
Naukri.com, Digilocker, various university result pages) were
used to conduct tests. Many forms of standard commands were
used, which a user might use in everyday jobs or studies, such
as ”Check my result,” ”Apply for internships,” or ”Download
my marks card,” as examples of real-world use cases. Custom
scripts were written and executed in a Docker container to
provide a simulation of the intended environment, enabling
the automation to be secure and isolated.

The technology stack utilized Node.js and Python for the
backend and React.js for the frontend. Docker and various
services (including AWS) were used to deploy online and
be scalable. The minimized WebSocket connection to the
automated tasking tool created a low-latency user leverage
where the user could view in real-time whether or not they
completed a task.

A group of users that had no extensive technical background
- mainly students from varied school systems - tested the
system too. They provided feedback using forms and note
taking, and were observed by the author to understand how
easy or usable the interface was and how well the natural
language segment performed.

Ultimately, this tapirs the solution as being entrenched,
scalable, usable, leading to rich automation and equitable
access for all.

IV. RESULTS

The implementation of the proposed AI-powered web au-
tomation system was tested across multiple educational and
job portals, including university result dashboards, internship
application sites, Digilocker, and Naukri.com. A set of 50
unique tasks were defined, covering routine operations such as
login, result retrieval, form filling, certificate downloads, and

TANZ(ISSN NO: 1869-7720)VOL20 ISSUE9 2025

PAGE NO: 2



job searches. These tasks were executed by both the automated
system and a group of human users for benchmarking.

A. Quantitative Results

The system achieved the following performance metrics:
• Intent Recognition Accuracy: The NLP module

achieved an average accuracy of 92.3% in correctly
mapping natural language instructions (e.g., “Check my
results” or “Apply for internship”) to the intended au-
tomation scripts.

• Script Execution Success Rate: Out of 50 tasks, 44
were executed successfully on the first attempt. This
corresponds to an 88% success rate, with failures pri-
marily caused by unexpected layout changes on dynamic
websites.

• Task Completion Time: Compared to manual execution,
the automation reduced average task completion time
by 63.5%. For instance, job application tasks that took
students around 3–4 minutes manually were completed
in under 1 minute by the system.

• User Effort Reduction: Users required only 1–2 input
steps (a natural language query or voice command),
compared to 8–12 steps in manual execution, representing
a reduction of nearly 75% in effort.

• Error Rate: The error rate was measured at 6%. Most er-
rors occurred in tasks that involved multi-step navigation
with CAPTCHA inputs or highly dynamic JavaScript-
driven forms.

B. User Study and Feedback

A usability study was conducted with 20 student participants
and 10 job seekers, none of whom had significant program-
ming experience. Participants interacted with the system for a
week and completed a survey afterward.

• Ease of Use: Participants rated the system at an average
of 4.6/5, citing that it “felt like chatting with an assistant
rather than coding a bot.”

• Time Savings: On average, participants reported saving
15–20 minutes daily in repetitive tasks such as checking
exam results or re-submitting applications.

• Learning Curve: Nearly 85% of participants reported
that they could use the tool confidently after only one
or two attempts, compared to weeks of practice usually
needed for Selenium-based scripting.

• Perceived Limitations: A few users (approx. 15%)
expressed frustration when tasks involved unpredictable
pop-ups, security OTPs, or visual CAPTCHA, which the
system could not yet bypass.

C. Comparative Analysis

When compared to traditional tools such as Selenium and
Puppeteer, the proposed system demonstrated:

• 35–40% faster execution times on average.
• 20% higher task completion rate for non-technical users.
• Significantly lower setup complexity, as participants did

not need to install drivers or write scripts.

D. Overall Findings

The results demonstrate that the system is effective in
automating repetitive tasks across multiple domains while
being accessible to non-technical users. Human feedback
emphasized convenience, reduced effort, and improved confi-
dence in managing online workflows. However, the study also
highlighted areas for improvement, such as better handling
of CAPTCHA, multi-factor authentication, and adaptation to
rapidly changing dynamic websites.

Overall, the system shows strong potential for real-world
deployment in educational and employment portals, bridging
the gap between advanced automation technologies and end-
user accessibility.

V. CONCLUSION

This project demonstrates how combining web automation
apps and AI and Natural Language Processing (NLP) can
result in a system to assist users with complex online tasks
using natural spoken or written commands. It is specifically
designed for non-technical users, such as students and job
applicants, to prevent them from the coding knowledge and
complicated tooling setup that often requires them to know
how to workflow. The system removes manual work for tasks
like filling out a web form, collecting data, or applying for
jobs.

The system leverages powerful tools like Playwright to
control web browsing, GPT-4 or BERT to scan what the
user wants the tool to do, and LangChain to generate scripts
on-demand. This gives the system great flexibility and the
ability to manage a range of websites and changing web
pages. The system’s back end employs Node.js and Python
components and Docker to run each task in its own safe and
separate container. The system also employs WebSockets to
communicate real-time updates to users while keeping them
up-to-date.

Notable strengths of the system include ease of use, making
it possible for a no-programmer to automate tasks with-
out rising to the level of complexity normally associated
with programming; scalability supporting different portals and
workloads; security with containerization; and the ability to
monitor tasks in an interactive and real-time way. Together,
these strengths address the known weaknesses of currently
available automation tools that too often enclose end-users
into a rigid, domain specific approach that requires technical
expertise.

With this project, we are delivering a future-ready, flexible
solution that will democratize web automation as a means
to enhance productivity and lessen the technical barrier that
exists to web-based task execution. This project also provides
the foundation to facilitate broader goals in education, em-
ployment and technical development to create equitable digital
empowerment.

REFERENCES

[1] T. R. Rashid et al., “Automating web tasks using natural language
commands,” Journal of Web Engineering, 2021.

TANZ(ISSN NO: 1869-7720)VOL20 ISSUE9 2025

PAGE NO: 3



[2] R. Hadi et al., “Natural language interface for web automation using
Selenium,” IEEE ICAI, 2020.

[3] L. Zhang and Q. Liu, “Web automation through dialogue systems,” ACM
Computing Surveys, 2022.

[4] S. Sharma and K. Jain, “Intent recognition using BERT,” ICON, 2021.

[5] J. Lee et al., “Natural language programming,” IEEE TSE, 2021.

[6] A. Dey and M. Triantafillou, “AI-based automation with Playwright,”
IEEE Software, 2021.

[7] G. Singh and V. Batra, “Web navigation using AI agents,” IUI, 2020.

[8] M. Patel and S. Kumar, “Cross-domain web automation,” IJCA, 2021.

[9] K. Arora and A. Mehta, “Voice-controlled web automation,” IEEE
Access, 2021.

[10] N. Li et al., “LLM4Jobs: Job data extraction using LLMs,”
arXiv:2309.09708, 2023.

[11] H. Lai et al., “AutoWebGLM: Web navigating agents,”
arXiv:2404.03648, 2024.

TANZ(ISSN NO: 1869-7720)VOL20 ISSUE9 2025

PAGE NO: 4


	Introduction
	Literature Review
	Methodology
	Results
	Quantitative Results
	User Study and Feedback
	Comparative Analysis
	Overall Findings

	Conclusion
	References

