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Abstract— Electric Vehicle (EV) battery temperature 
prediction is a critical component of efficient battery 
management and optimal vehicle performance. Accurate 
SOC estimation ensures safe operation, maximizes battery 
lifespan, and enhances the overall driving experience. 
Traditional methods, such as model-based approaches and 
equivalent circuit models, have been widely used but often 
struggle with complex battery dynamics and degradation 
over time. While deep learning approaches, particularly 
Recurrent Neural Networks (RNNs), have gained popularity 
due to their ability to model temporal dependencies, they 
face significant challenges such as high computational 
complexity, poor generalization to new datasets, and 
sensitivity to initial error states. These limitations hinder 
their practical applicability in real-world EV battery 
management systems. To address these challenges, proposing 
a novel approach for temperature prediction using 
an Adaptive Convolutional Neural Network (ACNN). The 
ACNN leverages the hierarchical feature extraction 
capabilities of convolutional layers, which are highly 
effective in capturing spatial and temporal patterns in 
battery data. Additionally, the ACNN incorporates adaptive 
mechanisms that dynamically adjust to varying battery 
conditions, such as temperature fluctuations, aging effects, 
and different operating modes. Attention channel-based 
Convolutional Neural Network enables improved feature 
representation through Input Based Kernel Adaption, 
higher accuracy of prediction up to 85% in comparing to 
other models with minimal learning rate,bettter 
generalisation and efficient computation. This adaptability 
ensures robust convergence, even when the model is 
initialized with significant initial errors, and significantly 
improves generalization across diverse datasets and 
operating conditions. 

 

Keywords— Electric vehicle battery, temperature 

prediction, deep learning, Adaptive Convolutional Neural 
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I. INTRODUCTION  

The worldwide transformation to electric vehicles 

(EVs) is primarily driven by the need to reduce climate 

pollutants, reduces dependence on fossil fuels, and foster 

environmentally friendly transportation. As EV utilization 

increases to rise, streamlining battery usage and 

performance becomes a key factor in enhancing overall 

vehicle functionality and user satisfaction. Battery 

integrity, particularly its thermal management, 

significantly influences electricity demand, operational 

distance, and durability. Poor thermal management can 

result in thermal overload, fast deterioration, and lower 

effectiveness. Managing battery temperature is particularly 

challenging due to constantly changing driving conditions, 

ambient temperature variations, and fluctuating power 

demands. 

Excessive heat can increase power usage due to 

extra cooling demands, while extremely cold temperatures 

can reduce battery efficiency and limit driving range. As a 

result, an effective and responsive thermal management 

system is crucial for keeping the battery within its optimal 

temperature range, ultimately improving both efficiency 

and lifespan. Recent advancements in machine learning, 

especially deep learning, have demonstrated promising 

potential in predictive modeling across different fields. 

Deep learning algorithms can process complex, high-

dimensional data and uncover intricate patterns that 

traditional methods may struggle to identify . 

Utilizing deep learning techniques for thermal 

prediction enables accurate forecasting of temperature 

variations under different conditions, facilitating precise 

control of the battery’s thermal state. Proposed research 

introduces an innovative approach that applies deep 

learning models to predict the thermal behavior of EV 

batteries. By leveraging sensor data, including 

temperature, voltage, and current, the objective is to 

forecast battery temperature profiles in real-time, thereby 

supporting optimal thermal management. The overarching 

goal is to enhance battery efficiency, extend lifespan, and 

improve overall EV performance. 

To improve the continuity and efficacy of EVs, it is 

essential to develop intelligent systems capable of 

managing battery temperature across varying driving 

conditions. Effective thermal management is vital in 

preventing overheating, which can damage the battery and 

increase the energy consumption of cooling systems. 

Conversely, low temperatures can reduce the battery’s 

discharge efficiency, ultimately limiting the vehicle’s 

driving range. Therefore, a dynamic and adaptive thermal 

management system is essential for optimizing energy use 

and extending battery lifespan . 

Accurately predicting battery temperature profiles is 

a complex task influenced by various factors, including 

driving patterns, weather conditions, battery load, and 

charge/discharge cycles. Variables like voltage, current 

contribute to temperature fluctuations that require 

continuous monitoring and real-time adjustments. 

Traditional thermal management approaches are often 

reactive, addressing temperature deviations only after they 

become critical. 
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In contrast, leveraging machine learning, particularly 

deep learning techniques, enables real-time prediction of 

battery thermal behaviour. Predictive models can forecast 

temperature variations in advance, allowing for proactive 

regulation of heating and cooling systems to prevent 

overheating or excessive cooling. 

 

II. LITERATURE  REVIEW  

Temperature fluctuations in batteries affect their 

performance, cycle life, and safety. To maintain optimal 

performance, it is essential to predict temperature changes 

accurately and implement precise cooling/heating 

solutions. Researches conducted a study on the role of 

battery temperature in EV performance, proposing a model 

for thermal management that integrates computational 

fluid dynamics and cooling systems. Their findings 

showed that adaptive thermal control could improve 

battery efficiency and longevity [1-6]. 

The effectiveness of deep learning models, such as 

Long Short-Term Memory and Recurrent Neural 

Networks, in forecasting battery temperatures and other 

crucial battery parameters. These models leverage time-

series data to predict future temperature behavior under 

varying conditions. Later in advancement applied LSTM 

networks for temperature forecasting based on historical 

data from the battery, ambient conditions, and driving 

patterns [7-9]. Deep learning techniques have emerged as a 

battery temperature and optimize thermal management 

systems. Their model showed that the accuracy of thermal 

predictions improved by 15% compared to traditional 

thermal modelling techniques, contributing to better 

thermal control and improved battery lifespan. introduced 

a deep neural network model to predict the state of charge 

(SOC) and temperature during rapid charge/discharge 

events. Their research demonstrated that real-time 

predictions helped to regulate temperature fluctuations and 

prevent battery overheating, increasing operational 

efficiency [10-12]. 

Different thermal management strategies for electric 

vehicle (EV) batteries, including passive cooling, active 

cooling, and the use of phase change materials (PCMs). 

Additionally, it examines various temperature prediction 

models, particularly those based on machine learning 

techniques such as artificial neural networks (ANN), 

Gaussian process regression (GPR), and deep learning 

methods. A comparative analysis of these models, 

highlighting their advantages and drawbacks in terms of 

prediction accuracy and computational efficiency [13]. 

Advanced techniques for managing battery temperature 

and predicting thermal behavior in electric vehicles. It 

examines both model-based and data-driven approaches, 

with a strong emphasis on machine learning and hybrid 

methods. The paper also includes case studies where data-

driven models, such as neural networks and fuzzy 

logic[14-15], have been utilized to forecast battery 

temperatures under different driving and charging 

scenarios. 

Deep learning brings exceptional precision and 

adaptability to temperature prediction. It’s successful 

deployment requires addressing key challenges such as 

data availability, computational demands, and model 

generalization. The incorporation of deep learning into 

hybrid frameworks, highlights its role as an enhancement 

rather than a replacement—leveraging the advantages of 

both traditional and modern approaches. 

Deep learning models, such as recurrent neural networks 

(RNNs) and long short-term memory (LSTM) networks, 

are particularly effective for this application as they can 

process time-series data and recognize patterns over time 

[16-18]. By integrating sensor data—including 

temperature, voltage, current, and environmental 

conditions—these models provide highly accurate 

predictions of the battery’s future thermal state. 

Additionally, as more data becomes available, the model 

continuously adapts to changing conditions, enhancing 

both performance and reliability. The above methods have 

challenges such as high computational demands, limited 

generalization to new datasets, and sensitivity to initial 

error states [19-20]. These limitations reduce their 

effectiveness for real-world EV battery management 

applications. The proposed methodology for temperature 

prediction of a battery using an Adaptive Convolution 

Neural Network (ACNN) overcomes the challenges. 

The ACNN employ the hierarchical feature 

extraction capabilities of convolution layers, which are 

highly effective in capturing spatial and temporal patterns 

in battery data. Moreover, the ACNN makes use of 

adaptive mechanisms that continuously adjust to changing 

battery conditions, including temperature variations, aging 

effects, and different operational modes. This flexibility 

enhances the model’s ability to achieve stable 

convergence, even when starting with substantial initial 

errors, mean while improving its generalization across a 

wide range of datasets and operating scenarios. 

III. PROPOSED WORK 

Adaptive convolution neural networks(ACNN) 

 

Adaptive CNNs constructs on the traditional CNN 

architecture by introducing dynamic components that 

adjust their behaviour based on input data. The primary 

goal is to optimize performance without compromising 

computational efficiency. 
Adaptive Features 

1. Input-Based Kernel Adaptation 

Adaptive Convolutional Neural Networks (CNNs) 

adjust their convolutional kernels dynamically according 

to the characteristics of the input data to diminish the 

noise. For example, an image with high contrast may 

require a distinct kernel configuration compared to one 

with more subtle features. This adaptive Attention 

mechanism enhances the model's ability to extract relevant 

features by capturing  patterns efficiently across diverse 

inputs which is acting as dynamic noise filter that reduces 

over fitting. 
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2. Multi-Level Adaptation 

These networks dynamically modify their 

architecture at various levels, adjusting factors such as 

layer depth, filter sizes, and activation thresholds based on 

the input's complexity. This hierarchical adaptation 

enhances the model's ability to generalize effectively 

across diverse datasets. 
Computational complexity for traditional models 

makes use of step-by-step process over time with Time 
complexity of O(N*HS2) i.e total length of N and Hidden 
size HS but is expensive with the increase of size, while 
ACNNs make use of Convolution filters with Time 
complexity as O(K*N*F) where K denotes Kernel Size, N 
denotes input size and F denotes number of Filters. 

 

3. Efficient Architecture Design 

Adaptive CNNs frequently utilize lightweight 

architecture shown in Fig:1, making them suitable for 

deployment on devices with limited computational 

resources, such as smartphones or IoT devices. This 

optimization ensures efficient performance without 

compromising accuracy. ACNN architecture with multiple 

convolution branches using different kernel sizes (3, 5, 7) 

to adaptively capture features at different scales. It also 

includes an attention mechanism to focus on the most 

informative channels along with Dropout and hidden 

layers for prediction and accuracy improvement. Thus 

Adaptive CNN applies multiple kernel sizes in parallel 

(multi-branch) and combines them with attention, 

allowing the model to adaptively focus on relevant 

features.  It improves generalization and feature extraction 

for time-series problems like SOC prediction. 

This approach not only enhances temperature 

regulation but also improves the overall energy efficiency 

of EVs by minimizing energy losses caused by excessive 

heating or cooling. As a result, it extends battery lifespan, 

reduces operational expenses, and supports greater 

sustainability in electric vehicles. Therefore, integrating 

machine learning with thermal forecasting presents 

significant potential for advancing EV technology in the 

future. 

Fig 1: Architecture of ACNN 

The proposed method is substantiated using real-

world Li-ion battery data, which includes voltage, current, 

and temperature measurements collected under various 

driving cycles and environmental conditions. A 

comprehensive data filtering pipeline is designed to handle 

the unique characteristics of battery datasets. This 

approach includes noise filtering to remove measurement 

artifacts, feature normalization to standardize input data, 

handling missing data through advanced imputation 

techniques, and extracting temporal patterns such as 

voltage gradients and cumulative current. These 

preprocessing steps ensure that the input data is clean, 

consistent, and representative of the underlying battery 

dynamics. Batch Normalization regularizes the 

convolutional layer outputs to maintain zero mean and 

unit variance, improving gradient flow and accelerating 

training. In the proposed work, it is applied around the 

attention module to ensure stable, well-scaled features, 

enabling more effective focus on important patterns. 

 To enhance understanding and readability, data 
visualization techniques are employed at every stage of 
the prediction. For instance, raw and filtered voltage data 
are visualized to explain the effectiveness of noise 
filtering, while histograms of normalized features 
highlight the impact of feature scaling. Temporal patterns, 
such as cumulative current and voltage trends, are plotted 
to provide insights into battery behaviours over time. 
These visualizations not only aid in debugging and 
refining the preprocessing pipeline but also help 
stakeholders understand the data-driven nature of the 
proposed approach. ACNN violates temporal modeling 
but combines it into a unified spatial-temporal feature 
extraction process. Unlike traditional methods that 
separate temporal and spatial analysis, ACNN jointly 
captures both through adaptive convolutions. 

The adaptive nature of the proposed framework 

ensures consistent performance across varying battery 

conditions, addressing key challenges in temperature 

predictions for Li-ion batteries. By combining advanced 

deep learning techniques with robust data preprocessing 

and visualization, this work paves the way for more 

reliable and efficient EV battery management systems. 

IV. METHODOLOGY AND RESULTS 

The accurate temperature prediction of an EV battery 

is a critical factor in ensuring optimal battery management, 

performance, and longevity.  Temperature prediction 

mainly gives the remaining charge in a battery relative 

temperature to its maximum capacity, akin to a fuel gauge 

in conventional vehicles. However, its estimation poses 

significant challenges due to the complex and dynamic 

behaviours exhibited by lithium-ion batteries under 

varying environmental conditions and usage patterns. 

Adaptive Convolutional Neural Networks (ACNN), an 

advanced machine learning architecture, present a 

promising solution to these challenges. By capturing non-

linear dependencies and learning directly from data, 

ACNN provides a robust mechanism to predict 

temperature with high accuracy and reliability, offering a 
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significant leap forward in battery technology and electric 

vehicle management systems. 

A. Data Augmentation and Preprocessing 

  The process begins with data augmentation, a 
technique crucial for enhancing the diversity and volume 
of available data. This step is particularly important for 
given datasets typically available in the field of battery 
management in reference to Fig.2. Data augmentation 
involves generating new samples from the existing 
dataset by applying transformations such as noise 
addition, scaling, and temporal shifts. The augmented 
data not only improves the robustness of the ACNN 
model but also ensures its adaptability across various 
real-world scenarios, including extreme operational 
conditions. 

 

 

 

 

 

Fig 2: Implementation process flow Diagram of ACNN 

 Once augmented, the data undergoes preprocessing 
to prepare it for analysis and modelling. Preprocessing is 
a meticulous step that entails cleaning the raw dataset, 
normalizing feature scales to ensure uniformity, and 
filtering outliers to remove potential sources of error. 
Additionally, feature engineering is performed to extract 
critical parameters such as voltage, current, temperature, 
and historical temperature values. These features, 
representative of the battery’s state and performance, are 
pivotal in enabling the ACNN to learn effectively and 
make accurate predictions. 

B. Exploratory Data Analysis (EDA) and Insights 

  Before proceeding with model training, 
Exploratory Data Analysis (EDA) is performed to 
thoroughly examine the dataset. This process employs 
statistical and graphical techniques to uncover patterns, 
relationships, and anomalies within the data. For example, 
correlation matrices help identify dependencies between 
temperature prediction and variables such as voltage, 
temperature, and current as directed. Additionally, time-
series analysis provides insights into how these 
parameters fluctuate across different drive cycles and 
operating conditions. The findings from EDA play a 
crucial role in shaping the subsequent modeling approach, 
ensuring that the ACNN architecture is optimized for the 
dataset's unique characteristics. By detecting biases and 
potential issues early, EDA establishes a solid 
groundwork for developing a reliable predictive model. 

C. Training and Adaptive Features of the ACNN Model 

  The foundation of training of an Adaptive 
Convolutional Neural Network (ACNN) model 
incorporates convolutional layers specifically designed to 
capture both spatial and temporal patterns within the input 
data. The ACNN is its adaptive mechanism, which 
dynamically modifies kernel parameters in response to the 
complexity of the data. This flexibility enables the model 
to effectively accommodate various operating conditions, 
ranging from mild discharges to significant temperature 
fluctuations. As a result, the ACNN delivers precise 
temperature predictions across a wide spectrum of 
scenarios. 

The Adaptive Convolutional Neural Network 

(ACNN) is trained by optimizing a carefully selected loss 

function, such as Mean Absolute Error (MAE) offers a 

clear metric for average prediction error, making it 

valuable for evaluating thermal risks when both 

overestimation and underestimation are equally critical 

initially computed to 0.001016 using ACNN and in Fig 4a 

the MAE obtained is 0.004, Root Mean Square Error 

(RMSE) gives greater weight to larger errors, which is 

vital in battery management systems where sharp 

temperature rises can be hazardous. It helps to assess the 

ACNN’s ability to handle abrupt and nonlinear thermal 

variations with less amount to about 0.700%. The model 

parameters are recursively updated using advanced 

optimization techniques like backpropagation and 

gradient descent. To enhance generalization and mitigate 

overfitting, the dataset is strategically split, with 70-80% 

used for training and the remaining 20-30% allocated for 

validation and testing as shown in Fig [3a and 3b]. 

Predicted structure approach ensures that the model not 

only learns effectively from the training data but also 

maintains strong performance on unseen test data—an 

essential factor for real-world applications. Accuracy 

performance metric indicates the proportion of predictions 

within a defined error margin (e.g., ±1°C), reflecting the 

model's reliability for real-time thermal control and 

alignment with safety and regulatory standards. 

 

Fig 3a: Plot of Training and Validation 

Loss 
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Fig 3b: Model Performance Metrics  

(RMSE, MAPE, Accuracy) 

D. Prediction and Post Processing 
 Once trained, the ACNN model is employed to 
predict the temperature of EV batteries under varying 
conditions. The input features such as real-time voltage, 

current, temperature and other data are fed into the 
model, which processes them through its layered 
architecture to generate temperature estimates clearly 
shown in Table:1. To further enhance the accuracy and 
reliability of these predictions, post- processing 
techniques are applied. Ensemble averaging, for 
example, combines predictions from multiple trained 
models to mitigate individual biases and reduce overall 
error margins as clearly shown above. Thresholding 
techniques are also employed to ensure that temperature 
prediction values remain within physically plausible 
bounds, typically ranging from 0% to 100%. 

Table1:Test Case implementation for various 
descriptions of input to Actual and Predicted values is as 
follows with all passed status: 

 

Table2 :Tabular Form For State Of Charge Estimation 

For Actual Vs Predicted 

E. Evaluation Metrics and Model Performance 

 The performance of the ACNN model is rigorously 
evaluated using a combination of statistical and practical 
metrics. Accuracy is defined as the proportion of 
temperature predictions falling within an acceptable error 
range, serves as a primary benchmark. MAE quantifies 
the average deviation between predicted and actual 
temperature prediction values, offering a straightforward 
measure of predictive reliability. RMSE, meanwhile, 
provides a more nuanced assessment by penalizing larger 
errors more heavily, reflecting the model’s consistency 
and robustness. By achieving high scores across these 
metrics, the ACNN demonstrates its efficacy as a state-
of-the-art tool for temperature prediction is shown in 
[Fig:4a(Traditional Analysis) and 4b(ACNN Analysis)]. 
The comparative analysis of Traditional models and 
temperature prediction for non linear circuits using 
ACNN. 

Test 

Case 

ID 

Test 

Description 
Input 

Expected 

Output 

Actual 

Output 

TC01 
File Upload 

Functionality 

CSV file 

containing 

SOC and 

voltage 

data 

File should 

be uploaded 

and data 

previewed 

File 

uploaded 

successfully 

and 

displayed in 

table 

TC02 
Data 

Preprocessing 

Raw data 

with 

missing 

values 

Cleaned and 

normalized 

data 

Missing 

values 

handled and 

data 

normalized 

TC03 

Model 

Training 

Execution 

Training 

dataset 

Model 

should begin 

training and 

show 

accuracy/loss 

curves 

Model 

trained 

successfully 

with 

convergence 

TC04 

SOC vs 

Voltage 

Prediction 

Test data 

file 

Predicted 

SOC values 

based on 

input 

Model 

generated 

accurate 

predictions 

TC05 

Graph 

Plotting 

(SOC vs 

Voltage) 

Prediction 

results 

Correctly 

plotted SOC 

vs Voltage 

graph 

Graph 

plotted with 

expected 

format and 

values 

TC06 

Time vs 

Dynamic 

Current Plot 

Time-

series 

input 

Line graph 

with current 

fluctuation 

over time 

Accurate 

and 

readable 

plot 

displayed 

TC07 

Error 

Handling for 

Invalid File 

Upload of 

.txt or 

malformed 

CSV 

Display error 

message 

“Invalid file 

format” 

message 

displayed 

TC08 

Model 

Evaluation 

Metrics 

Display 

Model 

prediction 

results 

Display of 

accuracy, 

RMSE, and 

error metrics 

All metrics 

shown with 

correct 

values 
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Fig: 4a  OCV vs SOC  and Current Vs Time plots of  Li-
ion Batteries Using Traditional methods 

 

Fig: 4b  OCV vs SOC  and Current Vs Time plots of  Li-ion 
Batteries Using ACNN 

Implications and Advantages 

 
 Implementing Adaptive Convolutional Neural 
Networks (ACNNs) for temperature prediction brings 
several significant benefits. The model's resilience to 
noisy or incomplete datasets makes it highly suitable for 
real-world applications, where sensor inaccuracies and 
data gaps frequently occur. Its ability to provide real-time 
predictions enhances its integration into dynamic battery 
management systems, while its adaptability to changing 
conditions ensures compatibility across various electric 
vehicle (EV) models and environments is finally resulted 
in Fig:5. Furthermore, by enhancing battery temperature 

prediction accuracy, ACNN plays a crucial role in 
extending battery lifespan and optimizing energy 
consumption, addressing key challenges in the pursuit of 
more sustainable transportation solutions. 

 

Fig 5: EV Battery SOC Prediction Using Adaptive Convolution 
Neural Network(ACNN) 

The proposed system has the following advantages:   

Reduced Memory Usage: Adaptive networks often 
reduce the number of parameters while balancing 
performance measures. 

Efficiency: Faster computations make these models 
suitable for real-time applications. 

Versatility: Enhanced performance on varied datasets. 

 By plotting the graph of Actual and predicted 
temperatures using Adaptive Convolution Neural 
Networks can help us to identify the various levels of 
temperature faults that effects the longevity of the battery 
can be identified easily. 

V. CONCLUSIONS 

 Deep learning-based temperature prediction techniques 

to enhance the battery life and efficiency of electric 

vehicles (EVs). By leveraging advanced deep learning 

models for thermal management, we demonstrated how 

accurate temperature predictions can optimize the 

performance of lithium-ion batteries, leading to better 

thermal control and improved overall battery longevity. 

Our findings highlight that precise thermal forecasting not 

only helps in maintaining the ideal operating temperature 

but also minimizes the risks of overheating and thermal 

runaway, thereby enhancing both the safety and efficiency 

of EV batteries. Additionally, the integration of thermal 

prediction models enables more effective battery 

management, ensuring that EV batteries operate within 

optimal conditions, thus extending their useful life and 

maximizing energy efficiency. 

 ACNNs dynamically adjust kernels, enabling better 

generalization across varied driving scenarios, though 

handling high-dimensional or multi-sensor data by 

traditional methods is rectified. Building ACNNs requires 

moderate to high development effort, advanced 

frameworks (like PyTorch/TensorFlow), and large, 

labeled datasets, all contributing to expensive for real time 

prediction. The use of Adaptive Convolutional Neural 
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Networks (ACNNs) has greatly enhanced the accuracy of 

battery temperature prediction and thermal management. 

However, continuous optimization and refinement are 

essential to effectively handle real-world challenges, such 

as temperature fluctuations and charging cycles. Future 

research can further explore the impact of environmental 

conditions and integrate hybrid modeling approaches to 

improve prediction reliability. 

By utilizing ACNNs for battery temperature 

estimation, this approach contributes to enhancing 

performance, safety, and sustainability in electric vehicle 

(EV) batteries. As a result, it plays a key role in developing 

more efficient and dependable EV technologies. 

Enhancing ACNN architectures to improve prediction 

accuracy across various battery types and  operating 

conditions. Developing light weight deep learning models 

for real-time deployment on embedded battery 

management systems (BMS). Integrating hybrid 

approaches by combining deep learning with physics-

based models for more reliable predictions. The proposed 

work can also be extended further to Deploy Model on 

Edge AI Devices in Optimizing for low-power hardware 

like Raspberry Pi for real-time Charge estimation. 

Hardware Requirements includes Training demands 

powerful GPUs, while real-time EV deployment is 

feasible on edge AI hardware with model optimization for 

speed and energy efficiency. 
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