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Abstract 
 

The development of a surface water monitoring network is a critical element in the assessment, restoration, and 

protection of stream water quality. This study applied principal component analysis (PCA) and principal factor 

analysis (PFA) techniques to evaluate the effectiveness of the surface water quality-monitoring network in a river 

where the evaluated variables are monitoring stations. The objective was to identify monitoring stations that are 

important in assessing monthly variations of river water quality. Twelve stations used for monitoring physical, 

chemical, and biological parameters, located at the main stem of the upper zone of Harmu river, Jharkhand, were 

selected for the purpose of this study. Results show that 3 monitoring stations were identified as less important in 

explaining the monthly variance of the data set, and therefore could be the non-principal stations. Results reveal that 

total organic carbon, dissolved organic carbon, total nitrogen, dissolved nitrate and nitrite, orthophosphate, 

alkalinity, salinity, Mg, and Ca were the parameters that are most important in assessing variations of water quality 

in the river. This study suggests that PCA techniques are useful tools for identification of important surface water 

quality monitoring stations and parameters. 
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1. Introduction 
 

 

Pollution of surface water with toxic chemicals and excess nutrients, resulting from storm water 

runoff, upper surface zone leaching, and groundwater discharges, has been an issue of worldwide 

environmental concern. With an increased understanding of the importance of drinking water 

quality to public health and raw water quality to aquatic life, there is a great need to assess surface 

water quality. This is true for the upper zone of Harmu river, Jharkhand. Pollution of the UZHR 

with contaminants such as nutrients, hydro- carbons, pesticides, and heavy metals comes from both 

point and non-point sources. These sources are the results of surface runoff generated   from   

urban, rural,   and   agricultural   lands;   discharge   from ditches and creeks; groundwater seepage 

from malfunctioning septic tank systems; aquatic weed control and naturally occurring organic 

inputs; and atmospheric deposition. The degradation of water quality due to these contaminants 

has resulted in altered species composition and   decreased   the overall health of aquatic 

communities within the river basin (Campbell et al., 1993; Durell et al., 2001; Ouyang et al., 2002). 

The primary objectives are to identify water quality problems, describe seasonal and spatial trends 

for developing qualitative and quantitative models of the riverine ecosystem, and determine permit 

compliance. Since its inception, the monitoring network has become one of the most critical efforts 

in assessment of surface water pollution in the UZHR and has been a significant resource for others 

working to prevent pollution of the river (Campbell et al., 1993). However, efforts to determine the 

effectiveness and efficiency of the monitoring network are still warranted. To this end, the 

principal component analysis (PCA) techniques were employed in this study. 

PCA are multivariate statistical techniques used to identify important components or factors 

that explain most of the variances of a system. They are designed to reduce the number of 

variables to a small number of indices (i.e., principal components) while attempting to preserve the 

relationships present in the original data. The problems of indicator parameter or import 

monitoring station identification, data reduction and interpretation, and characteristic change in 

water quality parameters can be approached through the use of the PCA. Details for mastering the 

arts of PCA are published elsewhere (Manly, 1986; Davis, 1986; Wackernagel, 1995; Tabachnick 

and Fidell, 2001). 

In recent years, the PCA and PCF techniques have been applied to a variety of environmental 

issues, including evaluation of ground water monitoring wells, interpretation of groundwater 

hydrographs, examina- tion of spatial and temporal patterns of heavy metal contamination and 

identification of herbicide species related to hydrological conditions. Some examples of PCA and 

PCF applications in environmental practices are described below. 
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Measurements of water level in wells are a routine part of groundwater studies. Recently, Winter 

et al. (2000) applied the PCA techniques to investigate the areal distribution of various types of 

water level fluctuation patterns within a study area and to determine if fewer wells could be 

measured while still achieving effective long-term monitoring goals at four small, lake-watershed 

research sites in the USA. These authors found that the PCA technique was very useful in 

summarizing information from large data sets to select long-term monitoring wells, which would 

greatly reduce the cost of monitoring programs. 

Additionally, the PCA technique has been used to estimate spatial and temporal patterns of heavy 

metal contamination (Shine et al., 1995); to investigate nutrient gradients within a eutrophic 

reservoir (Perkins and Underwood, 2000); and to identify the major herbicide compositions 

causing the observed data variations (Tauler et al., 2000). These studies have provided good 

examples of the effective application of PCA. However, there are few documented examples of 

the evaluation of the highly dynamic and complex surface water quality monitoring networks in 

river systems using the PCA or PFA technique. 

The aims of this study are to demonstrate the application of these novel data reduction techniques 

(i.e., the PCA and PFA techniques) to evaluate the potential for   reducing   the   number   of   

ambient water quality monitoring stations located   in   the main stem of the UZHR for long-

term monitoring purposes and   to   evaluate   the   importance   of various water quality 

parameters. The specific objectives are to: (1) present detailed procedures on how to interpret 

PCA results, (2) identify the non-principal surface water quality monitoring stations, and (3) 

extract the parameters   that   are most important in assessing variations in river water quality. 

 

2. Study area 

 

The study area of river Harmu is categorized in three distinct broad physiographic namely Achaean 

Precambrian metamorphic rock, Tertiary, and Quaternary alluvium. Granite and quartzite are the major 

rock in the upper region and the deposition of sediments in the lower region of the Subarnarekha river 

basin, major rock types are and the lower section shows mainly vast deposition of sediments.  

The Harmu River is a tributary of Subarnarekha River that forms the main local river system in Jharkhand 

and passing through Ranchi City (Fig.1). The study area is located between 85º07’ to 85 º 34’ E 

longitudes and 23º11’ to 23º32’N at an average elevation 640 m above mean sea level. The Study area 

witnessed rapid development during past decades in terms of urbanization, industrialization, and also 

population increase substantially. The Harmu River which once provided water to habitation settled near 

its course has now turned into a waste dumping ground resulting in complete deterioration of water 

quality and aesthetics. Geologically,  
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The river Harmu flows from west to north- east and it is the minor tributaries of Subarnarekha River. The 

Subarnarekha River and its tributaries constitute the local river system. During the survey it was found 

that forest cover in the bank of Harmu River has almost non-existent. In addition to there is a large and 

small slum encroachments along the bank of the river. This encroachment of bank of the river has a 

resulted into a drastic situation where the Harmu River has slowly dried up. Summer temperatures range 

from 20°C-42°C degrees whereas winter temperatures from 0°C-25°C degrees. The normal annual 

rainfall indicates that average rainfall is 1260 mm with maximum rainfall (90%) concentrated during 

monsoon months (June-September). 

The Sampling Locations in Harmu  river system for collecting water quality data is shown in Fig.2. 

 

  

 

 

 

Fig.1 Location of Harmu River tributary of Subarnarekha River 
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Fig.2 Sampling Point of Harmu River 

 

 

Table-1 

Water quality data from the monitoring stations located on the Harmu River used for this study 
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 Data collected are used to support a number of scientific and management investigations, 

including (1) identifying water quality problem areas (2) determining the amount, or mass load, 

of pollutants entering rivers from tributaries and point sources; (3) estimating daily, seasonal, and 

long- term water quality trends; (4) assessing the ability of best management practices to improve 

non-point source pollution; (5) examining how water quality affects the plants and animals living 

within the river; and (6) investigating how water quality varies within different reaches of the 

river. In this study, 12 water quality monitoring stations located in the main stem of the UZHR 

were selected for analysis (Fig. 1). The physical and chemical parameters collected from those 12 

monitor ing stations and used in this study are given in Table 1. 

 

3. Analysis Procedure 

 

PCA was first performed in this study to identify the potential for reducing the number of 

monitoring stations. This analysis investigated the annual variations in water quality parameters 

measured from the ambient water quality monitoring stations of the UZHR over a 1 year time 

period (April 2021- May 2022). Eleven water quality parameters from the 12 stations were 

examined in this study (Table 1). The procedures used for PCA are described below. 

 

3.1. Selection of water quality data 

 
The ambient water quality monitoring databases from the main stem of the LSJR were used in this 

study. Station locations are where conditions are the most representative and homogeneous, away 

from transitional areas such as point source mixing zones and near-shore regions. Some stations 
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are sampled daily or monthly and a couple of stations are sampled seasonally due to budget 

constraints. Timing of sample collection is routine and not intended to capture any specific flow or 

rainfall events. 

Data from these stations were collected at different times of day and/or different days of the year 

for each parameter. Plots of all of the data in Excel spreadsheets show that they are not normally 

distributed and are positively skewed. For the purpose of this analysis, the monthly median values 

for each parameter were used. The choice of the median values rather the mean values was based 

upon the fact that the measured parameter values are very skewed. In general, when this is the 

case, the median is a better measurement than the mean (Anderson and Sclove, 1986). 

In this study, a 1-year time period was selected based on the following reasons: (1) no complete 

data set is available to include all of the water quality parameters used in this study beyond the 1-

year period. In other words, although some parameters have been measured for a period of 15 years, 

others have only recently been added; and (2) the PCA requires no missing values in a data set. 

3.2 Selection of computation method 

PAST is free software for scientific data analysis, with functions for data manipulation, plotting, 

univariate and multivariate statistics, ecological analysis, time series and spatial analysis, morph metrics 

and stratigraphy. PAST is a practical tool designed to help you analyze scientific data by calculating 

statistical indicators and drawing plots? The statistics section includes univariate and multivariate 

analysis methods such as variance analysis, interclass correlation or canonical correspondence. package 

(Version 4.03), developed by (Oyvind Hammer). was employed to perform principal component 

analyses. This software has the PAST modules that can perform the analyses. 

Mathematically, PCA normally involve the following five major steps: (1) start by coding the 

variables  x1,  x2, y , xp  to  have  zero  means  and  unit variance, i.e., standardization of the 

measurements to ensure that they all have equal weights in the analysis; 

(2) calculate the covariance matrix C; (3) find the eigenvalues l1; l2; . . . ;  lp and the 

corresponding Eigen- vectors a1, a2, y, ap; (4) discard any components that only account for a small 

proportion of the variation in data sets (Manly, 1986); This conservative criterion was selected 

because the study area was large and the river system was highly non-linear and dynamic. Stations 

that do not have any factors with correlation coefficients greater than this value were 

considered as non-principle stations. 

 

4. Results and discussion 
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4.1. Principal component analysis 
 

In a PCA, the number of components is equal to the number of variables. However, a component is 

not only comprised of a single variable but rather all of the variables used in a study. For example, 

there are 12 variables (stations) used in this study, which produce 12 components. In each 

component, there are 12 variables (or stations) as shown in Eq. (1) below. The PCA results showed 

that of the 12 components, the first component accounted for about 95.6% and the second 

component accounted for about 6.5% of the total variance in the data set. These two components 

together accounted for about 99.1% of the total variance and the rest of the 10 components only 

accounted for about 0.8%. Therefore, our discussions should focus only on the first two 

components. 

From the eigenvectors obtained in the PCA, the first component, Z1, can be given as 

          Z1 ¼ 0:21x1 þ 0:21x2 þ 0:20x3 þ 0:22x4 þ 0:22x5 

  þ 0:21x6 þ 0:21x7 þ 0:20x8 þ 0:22x9 þ 0:20x10 

            þ 0:20x11 þ 0:22x12            - Eq.(1) 

Where x is the monitoring station, the subscripts denote the station numbers, and the coefficients 

are the eigenvectors. This component had almost equal loadings (i.e., similar coefficient values in 

Eq. (1) on all variables and therefore is a measure of overall performance of the stations. 

It is apparent that Z1 has an extremely high correlation with the measured data as it accounts for 

95.6% of the data variance, which would indicate that only one major source of data variation is 

present. This finding is somewhat different from other studies where many more components are 

needed to explain the same amount of variance (Bengraine and Marhaba, 2003). 

Similarly, the second component can be expressed as  

Z2 ¼ — 0:23x1 — 0:181x2 — 0:41x3 — 0:04x4 — 0:09x5 

P 0:27x6 þ 0:26x7 þ 0:36x8 þ 0:12x9 þ 0:37x10 

— 0:36x11 — 0:08x12         - Eq. (2) 

This equation shows that the second component, Z2, will be high if x2 to x6, x9 and x12 are high 

but x1 to x5 and x10 are low. Hence, Z2 represents a difference among the stations. The low 

coefficients of x variables such as those associated with x4 and x10 mean that the values of these 

variables have little effect on Z2. 

 A graphical representation of the first two component loadings is given in Fig. 2. This diagram was 

constructed using the eigenvectors from the first two components. It becomes clear that the first 

component had similar loadings (eigenvectors) for all of the monitoring stations and therefore this 
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component represents the overall performance of all the monitoring stations (Fig. 2A), while the 

second component measured the difference among the stations (Fig. 2B). 

 

4.2 Extraction of important monitoring stations 

Although the PCA results identified two principal components accounting for 99.1% of the annual variance in the 

dataset, they did not indicate which monitoring stations contributed most to this variance. To address this, a 

Principal Factor Analysis (PFA) was conducted. As with PCA, the number of factors in PFA equals the number of 

variables in this case, 12 monitoring stations—resulting in 22 factors. The Eigen value criterion used to retain 

principal factors was 4×10−64 \times 10^ {-6}4×10−6 (the SAS default), leading to the selection of 12 factors. PFA 

results showed that Factor 1 accounted for 94.7% and Factor 2 for 4.5% of the total variance, matching the 99.1% 

explained variance obtained from PCA. 

Table 1 presents the rotated factor correlation coefficients for all stations. A coefficient greater than 0.75 (75%) was 

considered significant, a conservative threshold chosen due to the large, highly non-linear, and dynamic nature of 

the river system. Stations with correlation coefficients below this value for all factors were classified as non-

principal.  
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    Fig. 3   Component loadings for the first component (A) and the second component (B). 

 

 

 

 

4.3 Validation of PCA results 

Before applying the above findings, their scientific reliability must be validated using independent methods. One 

approach is to compare water quality data analyses with and without the three non-principal stations. In this study, 

two cases were developed for comparison: 

Case 1: Data from only the principal stations were used to develop four regression relationships: 

 

       (1) dissolved organic carbon (DOC) vs. water color; 

 

(2) Chlorophyll a vs. total phosphorus (TP); 

 

(3) biochemical oxygen demand (BOD) vs. total organic carbon (TOC); and 

 

(4) chlorophyll a vs. total dissolved nitrogen (TDN). 

Case 2: Data from all stations (principal and non-principal) were used to develop the same four relationships. 
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The two cases were then compared to determine whether including the three non-principal stations improved the 

regression fits. For example, comparison of DOC–water color relationships (Fig. 3) showed that adding the non-

principal stations did not improve curve fitting. The regression using all 12 stations had an R2R^2R2 value of 

mentioned in (Fig. 4) relationships, where regressions based on principal stations consistently yielded slightly better 

R2R^2R2 values than those including all stations. 

 

 

Fig.4 Relationship between the principal stations (A), all stations (B) 

 

4.4 Identification of important water quality parameter 

Characterizing changes in surface water quality is essential for assessing the potential impacts of natural or 

anthropogenic point and non-point pollution sources on ecosystem health. In this study, 12 commonly used surface 
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water quality parameters site for Florida watersheds were selected to evaluate variations in LSJR water quality. A 

Principal Factor Analysis (PFA) was applied to identify the parameters most influential in explaining these 

variations. 

The selection of 11 parameters, rather than the full set of 12, was due to a limitation of the SAS software. When the 

number of variables (e.g., water quality parameters) exceeds the number of observations (e.g., monitoring stations), 

singularity issues arise in estimating covariance and correlation matrices in PCA or PFA, leading to unstable 

solutions. Some studies have reported that, for PCA, the number of observations must exceed the number of 

variables to ensure solution stability (Yu et al., 1998). In contrast, other studies have shown that PCA can be applied 

to any type of data matrix, regardless of the relative number of variables and observations (Golub & van Loan, 

1989). This apparent discrepancy is likely due to differences in the solution algorithms employed in these studies. 

5. Conclusions 

This study aimed to evaluate the ambient water quality monitoring stations located along the main stem of the 

Harmu River and, if necessary, refine the network based on scientific evidence. Findings indicated that the 

efficiency and cost-effectiveness of the monitoring network could be improved by reducing the number of stations 

from 22 to 10. Such a reduction could yield substantial cost savings without compromising the collection of 

essential surface water quality data. It should be noted, however, that the analysis was based solely on 3-year 

annual median values of water quality parameters. Before making any final decision to eliminate stations from the 

Harmu Mukti Dham network, PCA and PFA analyses should be conducted over a longer time frame (i.e., more 

than three years), assuming sufficient data are available. In addition, temporal variations—such as seasonal data—

should also be examined. These analyses would be particularly valuable if budget constraints necessitate 

streamlining the existing network. Further research is also recommended to identify the key physical, chemical, 

and biological parameters most effective in predicting seasonal variations in surface water quality across the Piska 

Nagari monitoring network. Such work could also assess the potential for reducing the number of parameters 

routinely measured. 
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