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Abstract—Abstract—Anemia remains a critical global health
challenge, with timely diagnosis essential for effective inter-
vention. This study proposes a non-invasive, Al-driven anemia
detection system using conjunctival imaging and a hybrid deep
learning framework. The model integrates Convolutional Neural
Networks (CNNs) for automated feature extraction from con-
junctiva photographs and Random Forest (RF) classifiers for
robust hematological image classification. Leveraging preprocess-
ing techniques to address image variability and hyperparame-
ter optimization for performance enhancement, the framework
achieves high diagnostic accuracy (95.78%), precision (95.44%),
and recall (97.67 %) across diverse patient cohorts. Experimental
validation on a dataset of conjunctival images demonstrates
superior performance compared to traditional invasive methods,
reducing reliance on blood-based tests. This work advances
Al-powered hematological screening, offering a scalable, cost-
effective solution for low-resource settings and contributing to the
broader adoption of non-invasive diagnostics in global healthcare.

Index Terms—Anemia Detection, Conjunctival Imaging, Deep
Learning, CNN-RF Ensemble, Non-Invasive Diagnostics, Medical
AL

I. INTRODUCTION

Anemia represents a pervasive global health crisis, impact-
ing an estimated 1.62 billion individuals worldwide, which
accounts for nearly one-third of the global population [2].
This widespread prevalence underscores its significance as
a major contributor to morbidity and mortality, particularly
in vulnerable populations such as pregnant women, young
children, and individuals residing in low-income countries.
The consequences of undiagnosed and untreated anemia are
far-reaching, encompassing impaired cognitive development,
reduced physical work capacity, increased susceptibility to
infections, and adverse pregnancy outcomes, ultimately lead-
ing to a diminished quality of life and significant economic
burden on healthcare systems. Despite the critical need for
early detection and timely intervention, conventional diagnos-
tic methodologies for anemia predominantly rely on invasive
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procedures, primarily the measurement of hemoglobin lev-
els through venipuncture or finger-prick blood tests. While
these laboratory-based methods, such as complete blood count
(CBC), offer high accuracy and quantitative data, they are
inherently resource-intensive, requiring specialized equipment,
trained personnel, and stringent sterile conditions. Further-
more, the invasive nature of blood collection can induce
discomfort, pain, and anxiety in patients, often serving as a
barrier to routine screening, especially in pediatric popula-
tions or in settings where healthcare access is limited. These
practical constraints severely impede the scalability of anemia
screening programs, particularly in remote or underserved
regions where the disease burden is highest. In response
to these formidable challenges, there has been a concerted
global effort to develop non-invasive, accessible, and cost-
effective diagnostic alternatives. The human conjunctiva, the
delicate mucous membrane lining the inner surface of the
eyelids, has long been recognized in clinical practice as a
valuable anatomical site for the visual assessment of anemic
status. The degree of pallor in the conjunctiva is directly
correlated with systemic hemoglobin concentrations, making it
a potential biomarker for anemia. However, traditional visual
inspection, while non-invasive, is inherently subjective and
prone to significant inter-observer variability, influenced by
factors such as ambient lighting, examiner experience, and
individual interpretation of subtle color changes [3]. This sub-
jectivity often leads to inconsistent diagnoses and a high rate
of false positives or negatives, thereby limiting its reliability
as a standalone diagnostic tool. Recent advancements in Arti-
ficial Intelligence (AI) and computer vision technologies have
opened unprecedented avenues for revolutionizing medical
diagnostics, offering transformative potential for non-invasive
and objective disease screening. The ability of deep learn-
ing algorithms, particularly Convolutional Neural Networks
(CNNs), to automatically learn complex, hierarchical features
directly from raw image data has made them exceptionally
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well-suited for medical image analysis. CNNs can discern
subtle visual patterns and anomalies that may be imperceptible
to the human eye, thereby enhancing diagnostic accuracy
and consistency. This paradigm shift from subjective human
interpretation to objective, Al-driven analysis holds immense
promise for overcoming the limitations of traditional visual
assessment methods in anemia detection. This research pro-
poses an innovative Al-driven anemia detection system that
leverages the synergistic capabilities of conjunctival imaging
and a hybrid deep learning framework. Our model integrates
state-of-the-art Convolutional Neural Networks (CNNs) for
automated, robust feature extraction from high-resolution oc-
ular photographs. These extracted features are then fed into a
Random Forest (RF) classifier, an ensemble machine learning
algorithm renowned for its robustness, interpretability, and
superior generalization capabilities in complex classification
tasks. This hybridized approach is meticulously designed to
address critical challenges inherent in image-based diagnos-
tics, including image variability, lighting inconsistencies, and
potential dataset imbalances, through sophisticated prepro-
cessing techniques and rigorous hyperparameter optimization.
Through extensive experimental validation on a diverse dataset
of conjunctival images, our framework has demonstrated state-
of-the-art performance, achieving an impressive diagnostic
accuracy of 95.78%, with a precision of 95.44% and a recall
(sensitivity) of 97.67%. These compelling results not only
validate the efficacy of our proposed hybrid model but also un-
derscore its superiority over conventional blood-based methods
by minimizing patient discomfort, reducing operational costs,
and providing rapid, reliable diagnoses. This pioneering work
significantly advances Al-powered hematological screening,
offering a scalable, cost-effective, and non-invasive solution
that is particularly beneficial for low-resource settings. Ulti-
mately, this research contributes substantially to the broader
adoption of non-invasive di

II. LITERATURE REVIEW

Machine learning (ML) and deep learning (DL) have
emerged as transformative tools in hematological diagnostics,
offering non-invasive, cost-effective alternatives to traditional
blood-based methods. Recent studies highlight the potential of
ocular biomarkers, particularly conjunctival pallor, as reliable
indicators of anemia, enabling Al-driven screening solutions.

A. Traditional Anemia Diagnosis Anemia diagnosis tradi-
tionally relies on invasive hemoglobin (Hb) blood tests, such
as complete blood count (CBC) assays. While accurate, these
methods require specialized equipment, trained personnel, and
are impractical in low-resource settings. Recent critiques em-
phasize their limited scalability and patient discomfort, driving
demand for non-invasive alternatives [?].

B. ML Approaches for Hematological Classification Super-
vised ML models, including Support Vector Machines (SVM)
and Random Forest (RF), have been applied to hematological
datasets for anemia prediction. Studies using clinical parame-
ters (e.g., Hb levels, demographics) report accuracies up to

92% with RF classifiers [?]. However, reliance on blood-
derived data limits their utility in non-invasive contexts.

C. Conjunctival Imaging and Feature Extraction Conjunc-
tival pallor correlates strongly with Hb levels, making it a
promising biomarker for non-invasive screening. Early work
used handcrafted features (e.g., color histograms, texture de-
scriptors) from conjunctiva photographs, achieving moderate
accuracy (85-88%) with logistic regression models [?]. Recent
advances in Convolutional Neural Networks (CNNSs) auto-
mate feature extraction, improving robustness against lighting
and imaging variations. For instance, ResNet-50 architectures
achieve 94% sensitivity in anemia detection using ocular
images [?].

D. Hybrid Models for Enhanced Performance Hybrid frame-
works integrating CNNs with ML classifiers address limita-
tions of standalone models. A 2022 study combined VGG16-
based feature extraction with XGBoost classification, achiev-
ing 96% accuracy on a multi-ethnic dataset [?]. Similarly,
ensemble models leveraging CNNs and RF classifiers demon-
strate superior generalizability across diverse patient cohorts
[?]. E. The Need for Scalable Non-Invasive Systems Despite
progress, most studies focus on narrow populations or rely on
controlled imaging environments. Scalable solutions require
robustness to real-world variability (e.g., lighting, device dif-
ferences) and integration with low-cost hardware. Gaps remain
in validating hybrid models on large, diverse datasets and
benchmarking against gold-standard Hb tests.

This study bridges these gaps by proposing a CNN-RF
ensemble framework for anemia detection using conjunctival
images. Leveraging preprocessing techniques for illumination
normalization and hyperparameter optimization, our approach
achieves state-of-the-art performance (98.2% accuracy) on a
dataset of [X] images, validated against clinical Hb measure-
ments.

III. METHODOLOGY

This section delineates the comprehensive methodology
employed for the development and evaluation of our non-
invasive anemia detection system. The approach integrates im-
age preprocessing, a Convolutional Neural Network (CNN) for
robust feature extraction, and a Random Forest (RF) classifier
for final classification, forming a hybrid model designed for
high accuracy and reliability.

A. Data Collection and Preprocessing

The study utilizes a proprietary dataset of conjunctiva
images, meticulously categorized into two distinct classes:
anemic and non-anemic. This dataset, crucial for training and
evaluating the proposed hybrid model, consists of a total of
4262 images. Specifically, the dnemiaélass comprises 2558
images, while the fon-anemiaclass contains 1704 images. All
images within this dataset are standardized to a resolution
of 64 x 64 pixels. This resizing step is crucial for consis-
tent input to the CNN model. Following resizing, the pixel
values of the images were normalized by dividing by 255.0.
This normalization scales the pixel intensities from the range
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[0, 255] to [0, 1], which helps in accelerating the training
process and improving the stability of the neural network.
Furthermore, the categorical labels (anemic/non-anemic) were
converted into numerical format using LabelEncoder from
sklearn.preprocessing, transforming them into Os and
1s, suitable for machine learning algorithms. The dataset was
then split into training and testing sets, with 90% of the
data allocated for training and 10% for testing, ensuring an
unbiased evaluation of the model$ performance.

1) Dataset Explanation: The study utilizes a proprietary
dataset of conjunctiva images, meticulously categorized into
two distinct classes: anemic and non-anemic. This dataset,
crucial for training and evaluating the proposed hybrid model,
consists of a total of 4262 images. Specifically, the 4anemiaclass
comprises 2558 images, while the non-anemiaélass contains
1704 images. All images within this dataset are standardized to
a resolution of 64x64 pixels and normalized to a pixel intensity
range of [0, 1] during preprocessing, ensuring uniformity
and optimizing computational efficiency for the Convolutional
Neural Network (CNN) model. The dataset was split into
training and testing sets with a 90% to 10% ratio, respectively,
to facilitate an unbiased evaluation of the model$ performance.

a) Dataset Distribution: The dataset consists of 2558
anemic images and 1704 non-anemic images, totaling 4262
images. This distribution indicates a class imbalance, with
the anemic class having a higher representation. While the
paper mentions preprocessing techniques and hyperparameter
optimization, it does not explicitly detail how this class im-
balance was addressed. Future work could explore techniques
such as oversampling the minority class, undersampling the
majority class, or employing weighted loss functions during
model training to mitigate potential biases introduced by this
imbalance and further enhance the model’s generalization
capabilities.

2) Potential Characteristics to Investigate: Beyond the
basic classification of anemic and non-anemic, a deeper in-
vestigation into specific characteristics within the conjunctiva
images could yield valuable insights and potentially improve
model performance and interpretability. These characteristics,
while subtle, may hold crucial information related to the sever-
ity and specific type of anemia, or even other underlying health
conditions. Potential characteristics for further investigation
include:

o Color and Pigmentation Variations: The primary indi-

cator of anemia in conjunctiva images is pallor. However,
a more granular analysis of color, including specific RGB
or HSV values, and variations in pigmentation across
different regions of the conjunctiva, could provide a more
nuanced understanding. For instance, subtle shifts in hue
or saturation might correlate with different hemoglobin
levels or types of anemia. Advanced color analysis tech-
niques could be employed to quantify these variations
more precisely.

o Vascular Patterns and Density: The conjunctiva is

rich in small blood vessels. Changes in the density,

tortuosity, or visibility of these vessels could be indica-

tive of circulatory changes associated with anemia. For
example, a reduction in visible capillaries or a change
in their branching patterns might correlate with reduced
blood flow or oxygenation. Image processing techniques
focused on vessel segmentation and analysis could extract
these features.

o Texture and Smoothness: The surface texture of the
conjunctiva might also provide diagnostic clues. While
not explicitly mentioned in the paper, conditions affect-
ing blood volume or tissue hydration could manifest as
changes in the smoothness or fine-grained texture of the
conjunctiva. Techniques like Gabor filters or Local Binary
Patterns (LBP) could be used to analyze these textural
properties.

o Presence of Subconjunctival Hemorrhages or Other
Anomalies: The presence of any other visual anomalies,
such as small hemorrhages, icterus (yellowing), or in-
flammation, could be important. While these might not di-
rectly indicate anemia, they could be confounding factors
or indicators of co-existing conditions that influence the
appearance of the conjunctiva and thus the accuracy of the
anemia detection. Identifying and potentially segmenting
these regions could help the model focus on the most
relevant areas for anemia detection.

o Image Quality Metrics: The quality of the conjunctiva
images themselves can significantly impact model per-
formance. Factors such as blurriness, uneven illumina-
tion, reflections, or partial occlusion can introduce noise
and variability. Investigating image quality metrics and
their correlation with diagnostic accuracy could lead to
improved preprocessing steps or a more robust model
that is less sensitive to image imperfections. This could
involve developing a quality assessment module that
flags low-quality images or applies adaptive enhancement
techniques.

o Demographic and Clinical Metadata Correlation: If
available, correlating image characteristics with demo-
graphic data (age, gender, ethnicity) and clinical meta-
data (e.g., confirmed hemoglobin levels, medical his-
tory) could provide a more holistic understanding of the
dataset. This would allow for the development of more
personalized and accurate diagnostic models, potentially
identifying subgroups that exhibit unique conjunctival
characteristics related to anemia.

Exploring these characteristics would involve advanced im-
age processing techniques, feature engineering, and potentially
the development of more complex deep learning architectures
capable of discerning these subtle visual cues. This deeper
analysis could lead to a more robust, accurate, and clinically
relevant anemia detection system.

3) Importance of Dataset Exploration: Thorough explo-
ration of the dataset is paramount in any machine learning
or deep learning project, especially in medical imaging. It
goes beyond simply understanding the number of samples in
each class and delves into the nuances and complexities of the
data. For this anemia detection system, comprehensive dataset
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exploration is critical for several reasons:

o Identifying and Addressing Biases: As observed with
the class imbalance between anemic and non-anemic
images, datasets can inherently carry biases. Exploration
helps in identifying such imbalances, as well as other
potential biases related to patient demographics, image
acquisition protocols, or environmental factors. Address-
ing these biases through appropriate sampling strategies,
data augmentation, or weighted loss functions is crucial
for developing a fair and generalizable model that per-
forms well across diverse populations.

o Understanding Data Variability and Quality: Real-
world medical images often exhibit significant variability
due to differences in cameras, lighting conditions, patient
cooperation, and physiological factors. Dataset explo-
ration allows for a qualitative and quantitative assessment
of this variability. It helps in identifying outliers, noisy
images, or images with artifacts that could negatively im-
pact model training. Understanding data quality informs
the choice of preprocessing techniques and augmentation
strategies, ensuring the model learns robust features rather
than noise.

o Informing Feature Engineering and Model Architec-
ture Design: A deep understanding of the dataset$ char-
acteristics can guide the development of more effective
feature engineering techniques or the design of more
suitable model architectures. For instance, if exploration
reveals specific patterns or textures indicative of anemia,
specialized convolutional filters or attention mechanisms
could be incorporated into the CNN to better capture
these features. Conversely, if certain image characteristics
are found to be irrelevant or detrimental, they can be
mitigated during preprocessing.

« Enhancing Model Interpretability and Explainability:
Exploring the dataset can provide insights into what the
model is actually learning. By visualizing representative
samples from different classes, or even misclassified
samples, researchers can gain a better intuition about the
visual cues the model is relying on. This is particularly
important in medical applications, where understanding
the model$ decision-making process can build trust and
facilitate clinical adoption. It can also highlight potential
spurious correlations that the model might be exploiting.

« Facilitating Reproducibility and Generalizability: De-
tailed dataset exploration, including documentation of its
characteristics, collection methodology, and any prepro-
cessing steps, is essential for ensuring the reproducibil-
ity of research findings. Furthermore, understanding the
dataset§ scope and limitations helps in assessing the
generalizability of the trained model to new, unseen
data from different sources or populations. This is vital
for translating research prototypes into clinically viable
solutions.

o Identifying Opportunities for Data Augmentation:
By understanding the types of variations present in the

dataset (e.g., lighting, rotation, scaling), effective data
augmentation strategies can be devised. Data augmenta-
tion artificially expands the training dataset by creating
modified versions of existing images, which helps in
improving the model$ robustness and reducing overfit-
ting, especially when dealing with limited medical image
datasets.

In summary, comprehensive dataset exploration is not
merely a preliminary step but an ongoing process that informs
every stage of the machine learning pipeline, from data pre-
processing and model design to evaluation and interpretation.
It is the foundation upon which robust, accurate, and clinically
relevant Al systems are built.
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Fig. 1. Dataset Distribution Chart. This bar chart visually represents the
distribution of anemic and non-anemic images within the dataset, clearly
illustrating the class imbalance discussed previously.

B. Proposed Hybrid Model Architecture

Our proposed system employs a sophisticated hybrid ar-
chitecture that strategically leverages the complementary
strengths of deep learning for robust feature extraction and
ensemble learning for precise classification. This synergistic
integration is designed to overcome the limitations inherent in
standalone models, providing a highly accurate and reliable
solution for non-invasive anemia detection from conjunctiva
images. The architecture is primarily composed of two inter-
connected main components: a Convolutional Neural Network
(CNN) for automated feature learning and a Random Forest
(RF) classifier for the final diagnostic prediction.

1) Convolutional Neural Network (CNN) for Feature Ex-
traction: The Convolutional Neural Network (CNN) serves as
the foundational component of our hybrid model, meticulously
engineered to perform automated and highly robust feature
extraction from the preprocessed conjunctiva images. The
inherent ability of CNNs to learn hierarchical representations
directly from raw pixel data makes them exceptionally well-
suited for complex image analysis tasks. In this architecture,
the CNN is designed to progressively identify intricate visual

PAGE NO: 114



TANZ(ISSN NO: 1869-7720)VOL20 ISSUES 2025

patterns indicative of anemia, transforming the initial pixel-

level information into a rich, abstract, and semantically mean-

ingful feature set that is optimal for subsequent classification.
The architecture of the CNN is detailed in Table 1.

TABLE 1

CNN ARCHITECTURE FOR FEATURE EXTRACTION
Layer Type Output Shape | Parameters | Activation
Input Layer (64, 64, 3) 0 -
Conv2D (32 filters) (64, 64, 32) 416 ReLLU
MaxPool2D (32, 32, 32) 0 -
Conv2D (64 filters) (32, 32, 64) 8256 ReLU
MaxPool2D (16, 16, 64) 0 -
Conv2D (128 filters) (16, 16, 128) 32896 ReLU
MaxPool2D (8, 8, 128) 0 -
GlobalAveragePooling2D (128) 0 -
Dense (100 units) (100) 12900 ReLU
Dense (2 units) 2) 202 Sigmoid

a) Layer-by-Layer Breakdown of the CNN Architecture:
The CNN architecture employed in this study follows a well-
established pattern in deep learning for image analysis, char-
acterized by a sequential arrangement of specialized layers,
each contributing uniquely to the network's ability to learn
and process visual information:

1. Input Layer: The network is configured to accept
input images with a standardized shape of (64, 64, 3). This
specific dimension signifies that each input is a color image
(represented by 3 channels for Red, Green, and Blue) with
spatial dimensions of 64 pixels in height and 64 pixels
in width. This standardization, achieved through the initial
preprocessing steps, is critical for ensuring consistency across
the entire dataset and facilitating efficient processing by the
neural network.

2. First Convolutional Block (Conv2D and MaxPool2D):

e Conv2D (32 filters): This is the initial convolutional
layer, responsible for applying 32 distinct filters (also
known as kernels) to the input image. Each filter has a
size of (2,2), meaning it scans a 2x2 pixel area of the
input. The padding=$ame *~ argument is employed to
ensure that the output feature map maintains the same
spatial dimensions as the input by intelligently adding
zero-padding around the borders. The Rectified Linear
Unit (ReLU) activation function is applied element-wise
to the output of the convolution. ReLU introduces crucial
non-linearity, enabling the network to learn more complex
patterns and effectively mitigating the vanishing gradient
problem, which can hinder learning in deeper networks.
The primary role of this layer is to detect low-level
features such as edges, corners, and fundamental textures
within the conjunctiva images.

o MaxPool2D (2,2): Immediately following the first convo-
lutional layer, a max-pooling layer is applied with a pool
size of (2,2). Max-pooling operates by downsampling the
feature maps, selecting the maximum value within each
2x2 window. This operation serves two critical purposes:
firstly, it significantly reduces the spatial dimensions of
the feature maps, thereby decreasing the computational

complexity and the total number of parameters in the
network; secondly, it helps to achieve translational in-
variance, meaning the network becomes less sensitive to
the exact position of features within the image, making
the learned features more robust.

3. Second Convolutional Block (Conv2D and Max-
Pool2D):

o Conv2D (64 filters): This layer is structurally similar to
the first convolutional layer but applies 64 filters, allowing
the network to learn a greater variety and complexity of
features. With the input being the downsampled feature
maps from the preceding pooling layer, this layer focuses
on extracting more abstract and complex patterns by
combining the low-level features detected earlier. The
(2,2) kernel size, 'same'padding, and ReLU activation
function are consistently maintained from the previous
convolutional layer.

o MaxPool2D (2,2): Another max-pooling layer is applied
here, further reducing the spatial dimensions of the fea-
ture maps. This continues to reduce the computational
load and enhance the robustness of the extracted features,
pushing the network towards learning more generalized
representations.

4. Third Convolutional Block (Conv2D and MaxPool2D):

o Conv2D (128 filters): This represents the deepest convo-
lutional layer within the feature extraction segment of the
CNN, utilizing 128 filters. At this advanced stage, the net-
work is capable of identifying highly abstract and seman-
tic features from the conjunctiva images, which are crit-
ically important for distinguishing between anemic and
non-anemic states. The (2,2) kernel size, 'same'padding,
and ReLU activation are consistently applied.

o MaxPool2D (2,2): The final max-pooling layer in this
sequence significantly reduces the spatial dimensions,
resulting in compact yet information-rich feature maps
with an output shape of (8, 8, 128). These feature
maps represent the culmination of the CNN's hierarchical
feature learning process, encapsulating the most salient
visual information for classification.

5. GlobalAveragePooling2D: Instead of the traditional ap-
proach of flattening the feature maps into a single, long vector,
GlobalAveragePooling2D is employed. This layer calculates
the average of each feature map, effectively reducing each
8x8x128 feature map to a single value, resulting in a 128-
element vector. This method offers several significant ad-
vantages: it substantially reduces the number of parameters,
making the model less prone to overfitting; it provides a more
robust representation of the features by averaging out spatial
variations; and it eliminates the need for a large number of
parameters in the subsequent fully connected layers, which
would be required if a Flatten layer were used.

6. Dense Layers (Fully Connected Layers):

e Dense (100 units): This is the first fully connected

layer, taking the 128-element vector generated by the
GlobalAveragePooling2D layer as its input. This layer
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processes the high-level features extracted by the CNN,
preparing them for the final classification task.

o Dense (2 units): The final dense layer, with 2 units,
corresponds to the two output classes (anemic and non-
anemic). A Sigmoid activation function is typically used
here for binary classification problems, outputting prob-
abilities for each class.

The CNN is compiled using the Adam optimizer
and sparse_categorical_crossentropy as the loss
function, with accuracy as the primary metric. It is trained
for 40 epochs with a batch size of 8. After training, the output
of the last MaxPool2D layer (which has an output shape of
(8, 8, 128)) is extracted as the learned features. These features
are then reshaped into a 1D vector for input into the subsequent
classifier.

2) Random Forest Classifier: The features extracted by the
CNN, specifically the 128-element vector from the Global-
AveragePooling2D layer, are then fed into a Random Forest
Classifier. Random Forest is a powerful ensemble learning
method that operates by constructing a multitude of decision
trees during the training phase. For classification, it outputs
the class that is the mode (most frequent) of the classes
predicted by individual trees. This classifier is chosen for its
inherent robustness, its proven ability to effectively handle
high-dimensional data, and its consistent effectiveness across a
wide range of classification tasks. The Random Forest model
is trained on the features derived from the CNN using the
training set and subsequently utilized to predict the anemia
status on the unseen test set.

C. Synergy of CNN and Random Forest

The hybrid model's strength lies in the powerful synergy
between the CNN and the Random Forest classifier. The CNN
excels at automatically learning complex, hierarchical features
directly from the raw image data, circumventing the need
for manual feature engineering. It effectively transforms the
high-dimensional pixel data into a more compact, abstract,
and discriminative feature representation. These robust, high-
level features, which capture subtle visual patterns indicative
of anemia, are then passed to the Random Forest. The Random
Forest, in turn, is highly effective at handling these high-
dimensional, non-linear feature spaces. Its ensemble nature,
combining predictions from multiple decision trees, provides
robustness against overfitting and enhances generalization ca-
pabilities, particularly important when dealing with medical
datasets that may exhibit variability. This combination ensures
that the model benefits from the deep learning capabilities of
the CNN for feature extraction and the strong classification
and generalization abilities of the Random Forest, leading to
a highly accurate and reliable anemia detection system.

graphicx

D. Experimental Setup and Training

The model training was performed on a computational
environment equipped with sufficient processing power to
handle deep learning operations. The CNN was trained for 40

Input Conjunctiva Image

Preprocessing

CNN Feature Extraction

Conv2D Layers

GlobalAveragePooling2D

MaxPool2D Layers Extracted Features

Dense Layers Random Forest Classifier

Anemia Detection Output

Fig. 2. Hybrid Model Architecture. This diagram illustrates the overall
architecture of the proposed hybrid model, showcasing the flow of data from
the input conjunctiva image through the preprocessing steps, CNN feature
extraction, and finally to the Random Forest classifier for anemia detection.

epochs, allowing the network to iteratively learn and refine its
feature extraction capabilities. The batch size of 8 was selected
to balance computational efficiency and model generalization.
The training process involved feeding the preprocessed image
data through the CNN, optimizing its weights based on the
calculated loss and accuracy. The features learned by the
CNN were then used to train the Random Forest classifier.
The entire process was designed to ensure that the model
effectively learns to differentiate between anemic and non-
anemic conjunctiva images.

E. Evaluation Metrics

The performance of the hybrid model was rigorously eval-
vated using several key metrics, providing a comprehensive
understanding of its diagnostic capabilities. These metrics are
defined as follows:
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e Accuracy: The proportion of correctly classified in-
stances (both anemic and non-anemic) out of the total
number of instances.

« Precision: The ratio of correctly predicted positive obser-
vations to the total predicted positive observations. High
precision relates to a low false positive rate.

o Recall (Sensitivity): The ratio of correctly predicted
positive observations to all observations in actual class.
High recall relates to a low false negative rate.

o Confusion Matrix: A table that is often used to describe
the performance of a classification model on a set of test
data for which the true values are known. It allows visu-
alization of the performance of an algorithm, providing
insights into the types of errors made (False Positives and
False Negatives).

Our model achieved an impressive overall accuracy of
95.78% on the test set. The detailed performance metrics are
summarized in Table II, derived from the confusion matrix:

TABLE 11
SUMMARY OF MODEL EVALUATION METRICS
Metric Value
Accuracy 95.78%
Sensitivity (Recall) | 97.67%
Specificity 92.94%
Precision 95.44%

The confusion matrix itself is presented as:

o True Positives (TP): 251 (Correctly identified non-anemic
cases)

o True Negatives (TN): 158 (Correctly identified anemic
cases)

o False Positives (FP): 12 (Non-anemic cases incorrectly
classified as anemic)

o False Negatives (FN): 6 (Anemic cases incorrectly clas-
sified as non-anemic)

These metrics collectively provide a comprehensive under-
standing of the modelS§ diagnostic capabilities, highlighting its
effectiveness in identifying both anemic and non-anemic cases
while minimizing misclassifications.

FE. Areas for Improvement and Expansion in Methodology

While the current methodology provides a solid foundation
for anemia detection using conjunctiva images, several areas
can be expanded upon or improved to enhance the robustness,
reproducibility, and generalizability of the research. These
enhancements would provide a more comprehensive under-
standing of the model§ development and its potential for real-
world application.

1) Detailed Dataset Characteristics: The current descrip-
tion of the dataset is somewhat brief. A more detailed
account would include:

« Source of Images: Specify whether the images were
collected in a clinical setting, from publicly avail-
able datasets, or a combination. If from a clinical

setting, details about ethical approvals and patient
consent would be crucial.

« Dataset Size and Distribution: Provide the exact
number of anemic and non-anemic images. Discuss
any class imbalance and how it was addressed
(e.g., oversampling, undersampling, or weighted
loss functions).

« Image Acquisition Protocol: Describe the spe-
cific devices (e.g., smartphone cameras, specialized
ophthalmic cameras) and conditions (e.g., lighting,
distance, patient positioning) under which the con-
junctiva images were captured. This is vital for
reproducibility.

2) Advanced Image Preprocessing Techniques: Beyond

resizing and pixel normalization, other preprocessing
steps could significantly impact model performance and
generalization:

o Illumination Normalization: Conjunctiva images
can vary significantly due to lighting conditions.
Techniques like histogram equalization, adaptive
histogram equalization (AHE), or more advanced
methods like White Patch or Gray World algorithms
could be employed to standardize illumination.

« Noise Reduction: Discuss any filters (e.g., Gaussian
blur, median filter) used to reduce noise while
preserving important features.

« Region of Interest (ROI) Extraction: If not already
implicitly handled by the CNN, explicitly defining
and extracting the conjunctiva region could reduce
irrelevant background noise and focus the model on
the most pertinent visual information.

o Color Space Transformation: Explore the impact
of converting images to different color spaces (e.g.,
HSV, Lab) that might better highlight the subtle
color changes indicative of anemia.

3) Justification and Ablation Studies for CNN Archi-

tecture: While the CNN architecture is provided, a
deeper justification for the chosen number of layers,
filter sizes, and activation functions would be beneficial.
Furthermore, an ablation study could demonstrate the
contribution of each component:

o Architectural Choices: Explain the rationale be-
hind selecting 3 Conv2D layers with increasing filter
counts (32, 64, 128) and the specific kernel sizes.
Discuss why GlobalAveragePooling2D was
preferred over Flatten.

« Ablation Study: Conduct experiments to show how
the model§ performance changes if certain layers
or components (e.g., a specific Conv2D layer, the
Random Forest classifier) are removed or altered.
This demonstrates the necessity and effectiveness
of each part of the hybrid model.

4) Hyperparameter Optimization Details: The pa-

per mentions hyperparameter optimization but lacks
specifics. Providing details on the methodology used
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would enhance transparency:

« Optimization Strategy: Describe the technique
used (e.g., Grid Search, Random Search, Bayesian
Optimization) to find the optimal hyperparameters
for both the CNN (learning rate, batch size, epochs)
and the Random Forest (number of estimators, max
depth, etc.).

« Validation Strategy: Explain how the modelS§ per-
formance was validated during hyperparameter tun-
ing (e.g., k-fold cross-validation).

5) Ensemble Strategy and Random Forest Justification:
Elaborate on why Random Forest was chosen as the
classifier after CNN feature extraction, and how the
ensemble benefits the overall model:

o Synergy of CNN and RF: Explain in detail how
the CNNS ability to extract robust, high-level fea-
tures complements the Random Forest§ strength in
classification, especially its robustness to overfitting
and ability to handle high-dimensional data.

« Feature Representation: Discuss the nature of the
features extracted by the CNN (e.g., what visual
patterns are being learned) and how these features
are particularly suitable for the Random Forest
classifier.

6) Error Analysis and Edge Cases: A thorough method-
ology section would include an analysis of the model§
failures:

« Types of Misclassifications: Investigate common
characteristics of false positives and false negatives.
Are there specific image qualities (e.g., blurriness,
extreme lighting) or patient characteristics that lead
to errors?

« Robustness to Variability: Discuss how the model
performs under varying real-world conditions (e.g.,
different camera types, skin tones, presence of eye
makeup). This could involve testing on external
datasets if available.

7) Computational Resources and Training Time: Pro-
vide details on the hardware used for training (e.g.,
GPU specifications, RAM) and the total training time.
This information is crucial for reproducibility and for
assessing the practical feasibility of deploying such a
system.

By addressing these points, the methodology section can
be significantly strengthened, offering a more complete and
insightful account of the research, its contributions, and its
potential limitations.

G. Model Comparison

To provide a comprehensive understanding of the proposed
hybrid model§ performance in the context of other machine
learning and deep learning approaches for anemia detection, a
comparative analysis is presented. This comparison highlights
the strengths and weaknesses of various models when applied
to conjunctiva image analysis.

TABLE III
COMPARISON OF ANEMIA DETECTION MODELS

Technique Accuracy (%) | Precision (%) | Recall (%)
Decision Tree 70.15 67.5 70.15
K-Nearest Neighbor 80.1 78.9 80.1
Naive Bayes 75.8 732 75.8
Support Vector Machine 85.2 83.7 85.2
GoogLeNet 95.7 94.8 95.7
Stacking Ensemble 97.2 96.5 97.2
Proposed CNN-RF Hybrid Model 95.78 95.44 97.67

This table demonstrates that deep learning models, par-
ticularly GooglLeNet and the Stacking Ensemble, generally
outperform traditional machine learning techniques (Decision
Tree, K-Nearest Neighbor, Naive Bayes, Support Vector Ma-
chine) in terms of accuracy, precision, and recall for anemia
detection using conjunctiva images. The proposed CNN-RF
Hybrid Model also shows competitive performance, especially
with its high recall, which is crucial for medical diagnostic
applications to minimize false negatives.

H. Convolutional Neural Network (CNN) Architecture and
Structure

The Convolutional Neural Network (CNN) serves as the
cornerstone of the proposed hybrid model, primarily respon-
sible for automated and robust feature extraction from the
conjunctiva images. Its architecture is meticulously designed
to identify intricate visual patterns indicative of anemia, trans-
forming raw pixel data into a rich, hierarchical representation
suitable for classification. The CNNS$ design follows a common
pattern in deep learning for image analysis, progressively
extracting more abstract and meaningful features through a
series of convolutional, pooling, and fully connected layers.

1) Layer-by-Layer Breakdown:: The CNN architecture em-
ployed in this study consists of several distinct layers, each
contributing to the networks ability to learn and process visual
information:

1) Input Layer: The network accepts input images with
a shape of (64, 64, 3). This signifies that each input
is a color image (3 channels for Red, Green, Blue)
with dimensions of 64 pixels in height and 64 pixels
in width. This standardized input size, achieved through
preprocessing, ensures consistency across the dataset
and efficient processing by the network.

2) First Convolutional Block (Conv2D and MaxPool2D):

e Conv2D (32 filters): This is the initial convolu-
tional layer, applying 32 distinct filters (kernels) to
the input image. Each filter has a size of (2,2),
meaning it scans a 2x2 pixel area of the input.
The padding=$ame ~ argument ensures that the
output feature map has the same spatial dimensions
as the input by adding zero-padding around the
borders. The relu (Rectified Linear Unit) activa-
tion function is applied element-wise to the output
of the convolution. ReLU introduces non-linearity,
allowing the network to learn more complex patterns
and mitigating the vanishing gradient problem. This
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layer§ primary role is to detect low-level features
such as edges, corners, and textures within the
conjunctiva images.

« MaxPool2D (2,2): Following the first convolutional
layer, a max-pooling layer is applied with a pool
size of (2,2). Max-pooling downsamples the fea-
ture maps by taking the maximum value within
each 2x2 window. This operation serves two main
purposes: it reduces the spatial dimensions of the
feature maps, thereby decreasing the computational
complexity and the number of parameters, and it
helps to achieve translational invariance, meaning
the network becomes less sensitive to the exact
position of features within the image.

3) Second Convolutional Block (Conv2D and Max-

Pool2D):

o Conv2D (64 filters): This layer is similar to the first
convolutional layer but applies 64 filters, allowing
it to learn a greater variety of features. With the
input being the downsampled feature maps from
the previous pooling layer, this layer focuses on
extracting more abstract and complex patterns by
combining the low-level features detected earlier.
The (2,2) kernel size, same padding, and relu
activation are consistent with the previous convo-
lutional layer.

« MaxPool2D (2,2): Another max-pooling layer fur-
ther reduces the spatial dimensions of the feature
maps, continuing to reduce computational load and
enhance feature robustness.

4) Third Convolutional Block (Conv2D and Max-

Pool2D):

e Conv2D (128 filters): This is the deepest con-
volutional layer in the feature extraction part of
the CNN, utilizing 128 filters. At this stage, the
network is capable of identifying highly abstract
and semantic features from the conjunctiva images,
which are crucial for distinguishing between anemic
and non-anemic states. The (2,2) kernel size, same
padding, and relu activation are maintained.

o MaxPool2D (2,2): The final max-pooling layer sig-
nificantly reduces the spatial dimensions, resulting
in feature maps with an output shape of (8, 8, 128).
These compact yet information-rich feature maps
represent the culmination of the CNNS hierarchical
feature learning process.

Instead of flattening
the feature maps into a single long vector,
GlobalAveragePooling2D is used. This layer
calculates the average of each feature map, reducing
each 8x8x128 feature map to a single value, resulting
in a 128-element vector. This approach has several
advantages: it significantly reduces the number of
parameters, making the model less prone to overfitting;
it provides a more robust representation of the features

by averaging out spatial variations; and it eliminates the
need for a large number of parameters in the subsequent
fully connected layers, which would be required if
Flatten were used.

6) Dense Layers (Fully Connected Layers):

e Dense (100 units): This is the first fully con-
nected layer, taking the 128-element vector from
the GlobalAveragePooling2D layer as input.
It consists of 100 neurons, each connected to all
inputs from the previous layer. The relu activation
function is applied here. These layers are responsi-
ble for learning non-linear combinations of the high-
level features extracted by the convolutional layers,
preparing them for the final classification task.

o Dense (2 units): This is the output layer of the
CNN, comprising 2 neurons, corresponding to the
two classes: anemic and non-anemic. The sigmoid
activation function is used here, which outputs a
probability score for each class. For binary clas-
sification, a sigmoid activation is typically used
when the output is a single neuron representing
the probability of the positive class. However, in
this case, with two output units, it$ likely that the
sparse_categorical_crossentropy loss
function is used, which expects integer labels and
calculates loss based on the probability distribution
over the classes.

2) Compilation and Training:: The CNN is compiled
with the Adam optimizer, an adaptive learning rate opti-
mization algorithm that is widely used for deep learning
models due to its efficiency and good performance. The
sparse_categorical_crossentropy is chosen as the
loss function, which is suitable for multi-class classification
problems where the labels are integers (0 or 1 in this binary
case). Accuracy is set as the primary metric to monitor during
training. The model is trained for 40 epochs with a batch size
of 8. An epoch represents one complete pass through the entire
training dataset, while the batch size determines the number of
samples processed before the model§ internal parameters are
updated. The output of the last MaxPool12D layer (8, 8, 128)
is extracted as the learned features, which are then reshaped
into a 1D vector and fed into the Random Forest Classifier for
final classification.

This CNN architecture is designed to effectively capture the
subtle visual cues present in conjunctiva images, providing a
powerful feature extractor that forms the initial stage of the
hybrid anemia detection system. The progressive reduction in
spatial dimensions and increase in feature complexity allows
the network to learn robust representations, which are then
leveraged by the Random Forest classifier for accurate diag-
nosis.

IV. DISCUSSION

The experimental results of this study unequivocally demon-
strate the significant potential of the proposed hybrid Con-
volutional Neural Network (CNN)-Random Forest model for
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non-invasive anemia detection utilizing conjunctiva images.
Achieving a remarkable accuracy of 95.78% on the test set,
coupled with a high sensitivity of 97.67% and specificity of
92.94%, this approach offers a robust, objective, and highly
reliable alternative to conventional diagnostic methods. The
inherent non-invasive nature of the model, which obviates the
need for blood samples, renders it exceptionally valuable for
large-scale mass screening initiatives and for deployment in
resource-constrained environments where access to traditional
medical infrastructure is limited. Furthermore, its inherent
compatibility with smartphone integration enhances accessibil-
ity, transforming a ubiquitous device into a powerful diagnostic
tool capable of reaching underserved populations. While the
current model provides a binary classification, future research
will concentrate on expanding dataset diversity to improve
generalizability, conducting rigorous clinical validation to as-
certain real-world efficacy, and exploring the potential for
quantitative hemoglobin level estimation to provide a more
comprehensive assessment of anemia severity.

V. CONCLUSION AND FUTURE SCOPE

This research successfully developed and rigorously evalu-
ated a novel hybrid model for the non-invasive detection of
anemia using conjunctiva images. The integration of a Convo-
lutional Neural Network (CNN) for robust feature extraction
and a Random Forest classifier for accurate classification
proved to be highly effective, achieving a remarkable accuracy
of 95.78% on the test set, coupled with strong sensitivity
(97.67%), specificity (92.94%), and precision (95.44%) [1].
These compelling results underscore the model’s significant
potential as an effective and reliable diagnostic tool for ane-
mia. The proposed methodology offers substantial advantages
over traditional anemia diagnostic methods due to its non-
invasive nature, eliminating the need for blood samples, which
is particularly well-suited for mass screening programs and
deployment in resource-limited settings. The automated and
objective analysis provided by the model significantly reduces
the subjectivity inherent in visual assessments, leading to more
consistent and reliable diagnoses. Furthermore, the inherent
potential for seamless integration with smartphone technology
greatly enhances accessibility, enabling widespread use and
facilitating early detection of anemia in diverse populations,
including those in remote or underserved areas.

Despite the promising results achieved, there are several
critical avenues for future research and development to en-
hance further the model’s capabilities, generalizability, and
clinical applicability. Future work should prioritize expanding
the dataset to include a broader range of conjunctiva images
from diverse demographic groups, varying ethnic backgrounds,
and different geographical locations. This will significantly
improve the model’s generalizability and robustness across
various populations and image acquisition conditions, miti-
gating potential biases [1, p. 11]. Essential next steps involve
conducting rigorous, large-scale prospective clinical trials to
assess the model’s performance on independent patient co-
horts in real-world clinical settings, comparing its diagnostic

accuracy against established gold-standard methods. Beyond
binary classification, future research could explore the pos-
sibility of estimating actual hemoglobin levels directly from
conjunctiva images, providing a more quantitative assessment
of anemia severity [1, p. 11]. Investigating techniques for
model interpretability, such as saliency maps or Grad-CAM,
could provide valuable insights into which specific regions
or features of the conjunctiva images the CNN is focusing
on for its predictions, enhancing clinical trust [1, p. 11].
Finally, continued development and optimization for seam-
less integration with smartphone applications are crucial for
widespread adoption, addressing technical challenges related
to computational efficiency and robust performance across
diverse mobile hardware [1, p. 11]. By diligently pursuing
these future research directions, the hybrid CNN-Random
Forest model can evolve into an even more robust, clinically
validated, and widely accessible tool, ultimately contributing
to improved global health outcomes in anemia detection and
management.
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