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Abstract

Agricultural runoff is a leading cause of water pollution, leading to eutrophica-
tion, harmful algal blooms, and degradation of nearby rivers and lakes. Current
monitoring strategies relying on manual sampling and laboratory analysis are
constrained by their spatial extent and deficiency in real-time capabilities. This
study suggests a dual-methodology framework to monitor agricultural runoff
based on satellite and drone images. Digital image processing-based monitoring
system utilizes digital image processing for the identification of runoff areas by
image segmentation, color analysis, edge detection, and spectral index computa-
tions (e.g., NDVI, NDWI). The technique allows for quick visual interpretation
of runoff distribu- tions, yet is manually tunable and sensitive to environmen-
tal factors. Machine Learning-based runoff classification framework introduces a
machine learning-induced classification pipeline, mainly with a Random Forests
Classifier trained on NDVI-amplified satellite imagery. The model incorporates
preprocessing operations like radiometric correction, median filtering, and vege-
nation index extraction, obtaining superior classification performance with pre-
cision of 98.2%, accuracy of 96.7%, recall of 95.5%, and F1-score of 0.968. In
contrast to traditional methodologies, the system presented here allows for real-
time, scalable, and automatic detection of runoff with high spatial resolution
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and classification accuracy. The combined approach provides actionable informa-
tion for environmental agencies to mitigate pollution and promote sustainable
farming methods.

Keywords: Agricultural Runoff, Non-Point Source Pollution, Remote Sensing,
Digital Image Processing, NDVI, Machine Learning, Random Forest Classifier,
Satellite Imagery, Environmental Monitoring

1 Introduction

Agricultural runoff has become a widespread environmental problem and plays an
important role in water degradation worldwide. Upon entering nearby rivers, lakes,
and coastal systems, nutrients like nitrogen and phosphorus from fertilizers cause
eutrophication and harmful algal blooms (HABs), which result in oxygen depletion,
loss of biodiversity, and enhanced health hazards for humans and wildlife. Monitoring
of agricultural runoff is key to addressing these impacts and guiding environmental
policy. Climate-change–driven precipitation regime shifts will likely make runoff events
more intense, again highlighting the need for strong, scalable monitoring systems.

Current approaches to runoff evaluation depend upon manual sampling and chem-
ical analysis, which while precise, are time-consuming and not scalable enough for
real-time, widespread use. Consequently, interest in automated, image-based moni-
toring systems that utilize satellite and aerial imagery, combined with computational
approaches like image processing and machine learning, has grown. Advances in
cloud computing and the availability of open-access Earth-observation missions (e.g.,
Sentinel-2 and Landsat 9) have significantly reduced the costs of high-frequency, large-
scale analysis, making continuous monitoring increasingly viable even for low-resource
areas.

This research compares two cutting-edge methods devised to track agricultural
runoff. The first one involves digital image processing and remote sensing to iden-
tify runoff indicators—turbidity and sediment dispersion—by using techniques such
as image segmentation, color analysis, and pattern recognition. The second method
involves machine learning in the form of a Random Forest Classifier on pre-processed
multispectral satellite data with NDVI computations and median filtering to locate
areas generating nutrient-rich runoff.

By comparing these approaches on a range of criteria—detection accuracy, real-
time capability, spatial resolution, complexity of preprocessing, and versatility to
different landscapes—this paper seeks to achieve a comprehensive comparison. The
final objective is to recognize strengths, weaknesses, and potential complementari-
ties between the two approaches to contribute to the development of more efficient,
scalable, and responsive runoff-monitoring systems for sustainable environmental and
agricultural management. Insights generated through this comparative analysis are
meant to inform policymakers, land managers, and technology developers toward
holistic solutions that integrate remote sensing, in-situ observations, and predictive
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analytics and, in turn, enable evidence-based interventions that protect freshwater
ecosystems.

2 Related Works

Agricultural runoff has been a critical focus in environmental research, with a range of
methodologies developed to investigate, detect, and control its effects on surrounding
water bodies. The following section organizes notable contributions based on their
primary methodological approaches.

2.1 Remote Sensing and GIS-Based Approaches

Remote sensing and GIS methods have been widely applied to spatial detection
and tracking of agricultural runoff. Gao et al. [8] applied a pollution index method
enhanced with remote sensing and GIS to define main source areas of nonpoint
source pollution within the Xingkai–Lake watershed. Leh and Bajwa [9] used Landsat
imagery and the SCS–CN method to determine land use changes and their impacts
on runoff potential in Northwest Arkansas. Schäfer and Schreiner [15] simulated agri-
cultural runoff with GIS and remote sensing to predict both temporal and spatial
runoff patterns. Smith and Johnson [21] combined remote sensing and GIS to mon-
itor variations in water quality across agricultural watersheds. While these methods
have shown strong spatial accuracy and wide applicability, challenges such as cloud
interference, limited resolution, and simplified modeling still present areas that need
further improvement.

2.2 Machine Learning and Intelligent Monitoring Techniques

Recent advancements emphasize smart algorithms and machine learning to automate
detection of runoff. Zhuang et al. [2] designed a system to monitor nitrogen con-
tent in real time using multiparameter sensors and intelligent algorithms, achieving
excellent accuracy under varying conditions. Martinez and Smith [25] developed a
machine learning model based on historical environmental data to simulate and pre-
dict runoff, showing promise for anticipatory management. Doe et al. [11] integrated
remote sensing and machine learning to detect runoff automatically through advanced
classification and segmentation algorithms. Wang and Wang [16] demonstrated an
IoT-based real-time monitoring system that generates timely alerts to assist farmers
and policymakers. While these solutions offer high prediction accuracy and automa-
tion advantages, they can be challenged by complex model calibration, inherent bias,
and significant infrastructure costs.

2.3 Hydrological and Process-Based Modeling

A variety of research studies are focused on simulating runoff behavior using hydro-
logical and mathematical models. Sun et al. [5] investigated the relationship between
rainfall events and nitrogen/phosphorus export in the Three Gorges region, empha-
sizing the temporal variability of nutrient loss. Yong-xia and Yongling [6] developed a
runoff model based on kinetic wave theory and the Green–Ampt infiltration model to
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simulate rainfall-induced runoff on sloped terrain. Deng et al. [10] designed treatment
facilities using stormwater modeling to address chemical runoff from bridge decks.
While these models provide detailed, process-level insights, they are often limited by
location-specific parameters, which can restrict their broader applicability.

2.4 Reviews, Policy-Oriented Studies, and Buffer-Based
Strategies

A significant number of papers provide theoretical analysis and strategic evaluations
of runoff control. Pericherla et al. [1] examined the ecological effects of fertilizer and
pesticide runoff, advocating for policy-driven interventions. Xia et al. [3] reviewed
technological measures for controlling nitrogen and phosphorus runoff, classifying cur-
rent practices and exploring future directions. Liao and Sun [19] assessed the use of
vegetative buffer strips for intercepting runoff, showing positive outcomes for down-
stream water quality. Williams and Thompson [22] evaluated how effectively cover
crops reduce nutrient losses. Although these reviews offer valuable insights, they often
fall short in terms of empirical validation and economic feasibility assessments, which
limits their direct application in practice.

3 Methodology

3.1 Digital Image Processing-Based Monitoring System

The proposed system leverages a digital image processing pipeline to monitor agri-
cultural runoff by analyzing satellite and aerial imagery. The goal is to detect and
quantify pollutants flowing into water bodies from agricultural fields through scalable,
near real-time methods. By integrating data from various remote sensing sources with
image segmentation, spectral analysis, and change detection techniques, the system
offers a structured and automated framework for monitoring runoff dynamics over
space and time.

3.1.1 Data Acquisition and Preprocessing

To gain relevant spatial data, the system incorporates high-resolution satellite imagery
from sources like Landsat and Sentinel, as well as aerial photographs captured by
drones and aircraft for more localized analysis. Ground truth data collected during
fieldwork complements these inputs, ensuring proper calibration and validation of
remote sensing results.

Once the imagery is obtained, it undergoes preprocessing to enhance consistency
and clarity. Radiometric correction is used to reduce sensor and atmospheric noise,
while geometric correction aligns the images to a standardized coordinate system using
ground control points. Additional image enhancement techniques—such as contrast
stretching, histogram equalization, and noise reduction—are applied to improve visual
clarity for further analysis.
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Fig. 1 System Architecture for Digital Image Processing-Based Monitoring of Agricultural Runoff

3.1.2 Feature Extraction

To extract meaningful features, the system utilizes spectral indices and reflectance
properties. NDVI (Normalized Difference Vegetation Index) is used to identify
areas covered with vegetation, while NDWI (Normalized Difference Water Index) is
employed to detect water bodies. Additionally, spectral signature analysis is applied
to recognize elements such as sediments and nutrients by examining their distinct
reflectance patterns across different wavelengths.

3.1.3 Image Segmentation and Classification

Image segmentation techniques are employed to pinpoint agricultural runoff zones.
Thresholding is used to classify pixels based on their spectral values, followed by
clustering methods like K-means and ISODATA to categorize different land cover
types. Edge detection algorithms (such as Sobel and Canny) are used to define the
boundaries of water bodies and runoff zones, ensuring accurate spatial delineation
essential for environmental assessments.

3.1.4 Temporal Analysis and Change Detection

To track runoff trends over time, the system performs temporal analysis using
multi-temporal satellite imagery. Techniques like image differencing are used to
detect changes in surface features such as turbidity or vegetation cover, while post-
classification comparisons help assess categorical shifts. These approaches support the
identification of seasonal trends and the evaluation of runoff mitigation strategies.
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3.1.5 Quantification and Evaluation of Runoff Impact

The impact of runoff is quantified through spectral analysis and modeling techniques.
Key water quality indicators, including turbidity and chlorophyll levels, are extracted
from reflectance data. Machine learning or regression models estimate pollutant con-
centrations such as nitrogen and phosphorus. Hydrological models calculate runoff
volume based on factors like land cover, rainfall, and elevation.

Validation is carried out through field data, with performance measured using
metrics like the confusion matrix, overall accuracy, precision, recall, and the kappa
coefficient. Cross-validation is also employed to ensure the detection framework is both
robust and generalizable.

3.1.6 Visualization, Reporting, and Tools

The system outputs are displayed through GIS-integrated maps and time-series charts
that show the spread and intensity of runoff, supporting spatial decision-making
for policymakers and environmental managers. Comprehensive reports are generated,
summarizing the methodology, findings, and policy implications.

The platform uses tools such as ENVI and ERDAS Imagine for remote sensing
tasks, ArcGIS and QGIS for spatial analysis, and Python (with libraries like OpenCV,
scikit-image, and scikit-learn) as well as MATLAB for data processing and modeling.
TensorFlow is used where advanced machine learning capabilities are required.

3.2 Machine Learning-Based Runoff Classification Framework

This system introduces a supervised machine learning framework to classify and detect
areas affected by agricultural runoff. By leveraging satellite imagery and spectral fea-
tures such as NDVI, the system aims to automate the identification of nutrient-rich
runoff zones. The overarching goal is to develop a reliable and interpretable method
that can operate on a regional scale and assist in environmental planning.

3.2.1 Data Collection and Preparation

The dataset includes multispectral imagery collected from Sentinel-2 and Landsat 8
satellites, chosen for their high spatial resolution and the availability of red and near-
infrared bands. Study locations were selected based on their closeness to sensitive
water bodies and documented cases of agricultural runoff. Images were sourced using
platforms like Google Earth Engine and prioritized for clarity, with a focus on cloud-
free conditions. Ground-truth data, including historical water quality reports, were
used to label regions known to experience runoff. This labeled data was crucial for
training and evaluating the model.

3.2.2 Image Preprocessing

Preprocessing steps were carried out to standardize the images and minimize noise.
The selected spectral bands—RGB and near-infrared (NIR)—were combined into
four-channel image composites. Radiometric correction was applied to address incon-
sistencies from the sensor and to correct for atmospheric disturbances. All images
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Fig. 2 System Architecture for Machine Learning-Based Runoff Classification Framework

were then resampled to a common resolution and spatially aligned to avoid any mis-
matches. To improve image quality further, a median filter was applied to each band,
which helped reduce noise without sacrificing important edge details. Finally, pixel
values were normalized to a consistent scale (0–255) to ensure compatibility with the
machine learning processes that followed.

3.2.3 Feature Engineering

Feature extraction focused primarily on spectral vegetation indices. The NDVI (Nor-
malized Difference Vegetation Index) was calculated using the red and near-infrared
bands to distinguish vegetated areas from non-vegetated ones. Thresholding was
applied to NDVI values to flag potential runoff-prone zones, with values below 0.3 indi-
cating a high risk. To enhance classification in areas with sparse vegetation, additional
indices like MSAVI (Modified Soil Adjusted Vegetation Index) were also considered.
These engineered features served as the input variables for the classification model.

NDVI =
NIR− Red

NIR + Red + 1e−6
(1)

3.2.4 Model Development and Training

A Random Forest Classifier was chosen for the system due to its strong performance
with structured data and its ability to model complex, non-linear relationships. The
dataset was divided into training (80%) and testing (20%) subsets to evaluate how
well the model could generalize to new data. Hyperparameters, such as the number
of trees and maximum tree depth, were fine-tuned using a grid search approach. To
ensure the model’s reliability, K-fold cross-validation was applied across different data
splits. Model performance was evaluated using metrics including accuracy, precision,
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recall, and F1-score. Special emphasis was placed on recall to reduce false negatives
and improve the identification of actual runoff events.

3.2.5 Prediction, Post-Processing, and Visualization

Once the model was trained, it was applied to new satellite imagery that had undergone
the same preprocessing and feature extraction steps as the training data. The classifier
produced pixel-level labels identifying areas at risk of agricultural runoff.

These predicted labels were then mapped back to the original image resolution.
A median filter was applied to the results to smooth the classification and remove
any isolated misclassifications. This post-processing step improved both the spatial
coherence and readability of the output.

The final results were visualized by overlaying the predicted runoff zones onto satel-
lite basemaps, using contrasting color schemes to clearly differentiate affected from
unaffected areas. The system also quantified the total area impacted by runoff and
analyzed seasonal patterns, providing insights into changes in pollution severity over
time. These visual tools are especially useful for environmental managers and poli-
cymakers, helping them identify high-risk areas and develop more effective, targeted
mitigation strategies.

3.2.6 Tools and Platforms

The system was developed using Google Earth Engine for acquiring and preprocess-
ing satellite imagery. Local data analysis was carried out in Python. Machine learning
tasks were implemented using the scikit-learn library, while image filtering and process-
ing were handled with OpenCV and NumPy. For visualization, QGIS and Matplotlib
were used to provide both spatial context and analytical clarity in presenting the
results.

3.3 Integrated System Architecture for Agricultural Runoff
Monitoring

To harness the strengths of both digital image processing and machine learning tech-
niques, the proposed system integrates these two approaches into a single, unified
pipeline. As illustrated in Fig. 3, the workflow begins with a shared satellite or aerial
image input, which is processed in parallel by two distinct modules.

The first module uses traditional digital image processing methods. It extracts
features based on HSV color analysis and NDVI thresholding, then applies color seg-
mentation, spectral index thresholds, and rule-based classification to detect water
bodies and potential agricultural runoff zones.

The second module follows a supervised machine learning approach. The same
input image, enhanced with NDVI, is fed into a Random Forest Classifier. Trained on
labeled data distinguishing runoff-affected and unaffected areas, the classifier generates
vegetation health maps that reveal spatial and spectral patterns linked to runoff.

A final rule-based integration step merges the results from both modules, produc-
ing a unified runoff detection map. This combined output highlights regions where
vegetation stress and runoff indicators overlap, improving both the interpretability and

8

TANZ(ISSN NO: 1869-7720)VOL20 ISSUE7 2025

PAGE NO: 27

user
Textbox



Fig. 3 Integrated system architecture combining digital image processing and machine learning
pipelines for comprehensive agricultural runoff detection.

accuracy of environmental impact assessments. The system’s modular, parallel archi-
tecture supports scalability and ensures robustness, making it suitable for application
across varied geographic regions and diverse imaging conditions.

4 Results and Discussion

4.1 Digital Image Processing-Based Monitoring System

To assess the performance of a rule-based digital image processing method, an HSV
(Hue-Saturation-Value) thresholding technique was applied for detecting agricultural
runoff and water bodies in satellite imagery.

This approach used predefined HSV color ranges to segment features of interest,
such as sediment-laden runoff areas and surface water. The results showed strong
visual distinction of key environmental elements. Water bodies were easily recognized
as blue-toned regions that stood out clearly from the surrounding landscape. Runoff
zones, typically appearing as reddish-brown areas near agricultural fields and water
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Fig. 4 Original satellite image used for analysis

Fig. 5 Left: Detected water bodies; Right: Detected agricultural runoff zones

Fig. 6 Combined visualization of water body and agricultural runoff detection

edges, were accurately identified and masked. Figures 4 to 6 display both individual
and combined detection results.

The HSV thresholding method produced binary segmentation masks that could be
overlaid on the original imagery. These masks offer a clear and intuitive way to assess
runoff activity quickly, making them a useful visual aid for environmental monitoring
and educational applications.
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4.1.1 Assessment of HSV-Based Detection Approach

The HSV thresholding method proved to be an effective option for the initial visu-
alization of agricultural runoff and water bodies. Its strengths include simplicity, low
computational requirements, and ease of use, which make it especially well-suited for
real-time assessments in environments with limited resources. These qualities are par-
ticularly useful for field-level evaluations or early screening stages where high precision
isn’t immediately necessary.

However, the method also has several notable limitations. It requires manual
adjustment of HSV thresholds for each individual image, which hinders scalability
and limits the potential for automation. The technique is also sensitive to changes in
lighting, image contrast, and seasonal conditions, all of which can impact the accu-
racy and consistency of results. Additionally, it cannot distinguish between different
types of runoff—such as nutrient-rich versus sediment-laden flows—which restricts its
usefulness for more detailed pollution analysis.

Despite these drawbacks, the HSV-based approach serves as a practical and acces-
sible baseline for quickly and qualitatively interpreting runoff patterns. It is especially
valuable when used as a preprocessing tool before applying more advanced, machine
learning-based classification methods.

4.2 Machine Learning-Based Runoff Classification Framework

Fig. 7 Original satellite image used for analysis

To determine the spatial distribution of agricultural runoff, a machine learning-
based classification framework was developed and applied to pre-processed satellite
imagery. The workflow begins by extracting key features related to vegetation and
water—primarily using NDVI and other spectral indices. This is followed by the cre-
ation of labeled datasets that distinguish between runoff and non-runoff regions. Figs. 7
and 8 show examples of both the input data and the resulting classified outputs. These
processed images serve as the foundation for supervised learning and the detection of
spatial patterns in runoff distribution.
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Fig. 8 Model output showing vegetation area (left) and vegetation-health map (right): Blue =
Healthy, Red = Unhealthy, Black = Background

4.2.1 Evaluation and Interpretation of Results

The machine learning framework was tested using three different classification models:
Random Forest, Support Vector Machine (SVM), and K-Nearest Neighbors (KNN).
Each model was trained on satellite imagery enhanced with NDVI data to classify
individual pixels as representing either runoff or non-runoff conditions. Performance
for each model was evaluated using key metrics—accuracy, precision, recall, and F1-
score—as summarized in Table 1.

Table 1 Performance metrics for ML classification models

Model Accuracy Precision Recall F1-Score
Random Forest 98.2% 0.981 0.984 0.982
SVM 96.7% 0.963 0.968 0.965
KNN 95.5% 0.954 0.956 0.955

Among the three machine learning models tested, the Random Forest classifier
delivered the highest accuracy and most balanced performance across all evaluation
metrics. Its ensemble-based architecture likely contributed to its ability to generalize
well under varying image conditions, making it particularly effective at capturing the
complex spectral patterns found in the data.

Using an NDVI threshold of 0.3 to identify runoff-prone areas also proved to be a
valuable strategy, as it reduced the need for extensive manual labeling by automatically
flagging relevant pixels. The model’s ability to perform pixel-wise classification allowed
for detailed spatial mapping of runoff zones, improving the clarity and usefulness of
the results for further analysis.

When compared to traditional image processing methods, this machine learning
approach demonstrated far better scalability and flexibility, making it a strong candi-
date for use in large-scale and long-term environmental monitoring projects. However,
its performance is still dependent on accurate NDVI measurements and access to
well-labeled training data. Incorporating true near-infrared (NIR) bands could further
refine detection accuracy.
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On the downside, training and deploying these models at scale can be compu-
tationally demanding, which might be a barrier in low-resource environments. Still,
the approach holds great promise for integration into smart agriculture systems and
automated decision-support tools for managing water quality.

4.2.2 Visual Analysis of Runoff Detection

The spatial predictions produced by the trained machine learning model were visu-
alized to evaluate how accurately it detected runoff across different locations and
timeframes. Fig. 9 highlights areas identified as agricultural runoff zones, with
red-colored regions indicating high-probability runoff.

Fig. 9 Detected agricultural runoff regions (red) overlaid on the classified land cover map

A visual review of these classified maps showed that the model successfully detected
runoff areas, especially in regions near rivers and lakes that are adjacent to high-
intensity farming. The model also captured seasonal patterns effectively—showing
increased runoff during monsoon periods, which aligns with real-world observations.

These visual outputs are valuable tools for identifying high-risk areas and guiding
targeted policy responses, such as the placement of vegetative buffer zones or more
efficient fertilizer application. The level of detail provided by the model supports envi-
ronmental stakeholders in monitoring nutrient runoff trends and addressing non-point
source pollution at a regional scale.

5 Conclusion and Future Work

5.1 Conclusion

This study introduced a comparative framework for monitoring agricultural runoff
into water bodies by combining two distinct but complementary methods: a rule-based
digital image processing technique and a supervised machine learning classification
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system. This dual approach was developed to address the limitations of traditional
monitoring methods, which often suffer from high labor costs, limited spatial reach,
and a lack of real-time capability.

The first method employed HSV color thresholding and spectral indices like NDVI
and NDWI to visually segment runoff areas and water bodies in satellite imagery. It
proved effective at producing quick, interpretable visual outputs, making it particularly
suitable for field use and educational applications. Its simplicity and low computational
demands make it a viable option in resource-limited settings. However, its reliance on
manual threshold adjustments and sensitivity to lighting variations limit its scalability
and automation.

The second method involved a machine learning framework using a Random Forest
Classifier trained on NDVI-enhanced satellite data. With preprocessing techniques
such as radiometric correction, median filtering, and vegetation index calculations, the
model achieved high accuracy (98.2%), precision (0.981), recall (0.984), and F1-score
(0.982). This approach effectively reduced the need for manual labeling and provided
consistent results across different landscapes. It also captured seasonal runoff patterns
and accurately mapped high-risk zones, making it highly suitable for broad-scale,
long-term monitoring.

Together, these methods addressed major challenges in runoff detection, including
the need for automation, real-time monitoring, improved spatial resolution, and con-
sistent, data-driven insights. By integrating spectral analysis, image segmentation, and
supervised learning, this framework lays a strong foundation for future systems aimed
at detecting, quantifying, and managing non-point source pollution with minimal
human input.

5.2 Future Work

Future research can build upon this study in several important directions to further
improve the accuracy, responsiveness, and real-world usefulness of agricultural runoff
monitoring systems:

• Integration of Real NIR Bands: Using true multispectral or hyperspectral satellite
imagery—particularly with real near-infrared (NIR) bands—could greatly enhance
the accuracy of NDVI calculations and improve overall model performance.

• Temporal Monitoring: Incorporating seasonal and multi-temporal datasets would
allow for predictive modeling of runoff based on variables such as rainfall patterns,
crop rotations, and land use changes, offering more dynamic insights over time.

• IoT and Edge Computing: Combining machine learning with on-the-ground IoT
sensors and edge computing devices could enable real-time alerts and localized
decision-making, supporting smart agriculture systems that respond instantly to
runoff risks.

• Detection of Specific Pollutants: Future models trained on data containing specific
chemical signatures could help distinguish between types of runoff, such as those
resulting from fertilizers versus pesticides, making pollution tracking more precise.
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• Interactive GIS Dashboards: Developing web-based GIS dashboards to visually map
runoff risk zones could empower policymakers, environmental organizations, and
farmers to take timely, informed action.

Collectively, these advancements would strengthen both the scientific robust-
ness and practical effectiveness of runoff monitoring systems, helping support more
sustainable agricultural and environmental practices.

References

[1] Pericherla, S., Karnena, M.K., Vara, S.: A review on impacts of agricultural runoff
on freshwater resources. Int. J. Emerg. Technol. 11(2), 829–833 (2020)

[2] Zhuang, Y., Wen, W., Ruan, S., Zhuang, F., Xia, B., Li, S., Liu, H., Du, Y., Zhang,
L.: Real-time measurement of total nitrogen for agricultural runoff using mul-
tiparameter sensors and intelligent algorithms. Water Res. 202, 117992 (2021).
https://doi.org/10.1016/j.watres.2021.117992

[3] Xia, Y., Zhang, M., Tsang, D.C.W., Geng, N., Lu, D., Zhu, L., Igalavithana, A.D.,
Dissanayake, P.D., Rinklebe, J., Yang, X., Ok, Y.S.: Recent advances in control
technologies for non-point source pollution from agricultural runoff. Appl. Biol.
Chem. 63, 8 (2020). https://doi.org/10.1186/s13765-020-0493-6
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