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Abstract 

This research introduces CTsGAN, a novel Generative Adversarial Network 
tailored for enhancing the perceptual quality of CT scan images obtained from portable 
scanners. Building upon the foundations of super-resolution GANs and inspired by the 
Enhanced SRGAN (ESRGAN), CTsGAN addresses the increasing demand for high-
quality medical imaging in the context of portable CT scanners. The model employs a Kth 
Order Degradation Module to simulate real-world multi-level degradation, enhancing the 
robustness of the training process. The network architecture incorporates a modified 
Residual-in-Residual Dense Block with Batch Normalization for efficiency, a U-Net 
Discriminator with Spectral Normalization for discriminative accuracy, and a Perceptual 
Loss function for improved visual fidelity. The research also delves into the challenges 
posed by the mobile CT scanning environment, exploring a second-order degradation 
model to bridge the gap between synthetic and realistic degraded images. Additionally, 
the paper details the training process, web application deployment, and comparative 
evaluations against state-of-the-art methods, showcasing CTsGAN's superior 
performance in terms of sharpness, brightness, and detail preservation. The user-friendly 
web application, implemented using the Streamlit library, provides a seamless experience 
for medical professionals to enhance CT scan images and make informed decisions. As 
a contribution to the field of medical image enhancement, CTsGAN demonstrates potential 
applications in real-time scenarios and remains open for further development and 
contributions. 
 

Keywords: Super-Resolution Generative Adversarial Network (SRGAN), CT-
Scan images, COVID-19 CT Scan Images, Image Enhancement methods, COVID 
Pandemic Era 

1. Introduction 

In this work, the researchers build CTsGAN by working on SRGAN and modifying 
the architecture inspired by the techniques followed in designing Enhanced SRGAN 
(ESRGAN). The researchers use the same Residual-in-Residual Dense Block as a 
building unit of the network. However, they reintroduce the Batch Normalization (BN) 
Layer as our resulting network architecture is smaller and has a lower computational cost 
(since we only deal with grayscale images). They use the ESRGAN’s Relativistic average 
GAN (RaGAN) for the discriminator to obtain relative realness value instead of absolute 
value. They also employ Spectral Normalization to stabilize training and suppress 
overshooting artifacts. This helps the generator in recovering more realistic details. For 
sharper edges and more visually pleasing results, they employ a modified version of 
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perceptual loss. Here, they use the VGG features before activation instead of after 
activation (in SRGAN). 

 
The pandemic era has resulted in an increased demand for portable CT Scanners. 

Manufacturing companies generally achieve portability with a small statistically significant 
compromise in subjective quality compared to stationary CT Scanners [1]. With the 
increase in remote appointments (online) and second opinions, the images undergo 
complex natural degradation and compression while shared via various social media 
platforms. Sharing the images multiple times significantly diminishes the quality on the 
receiver end, making it all the more difficult for doctors and other medical professionals to 
find vital information and analyze the image effectively. This problem lies under the broad 
spectrum of Single Image super-resolution (SISR), a fundamental low-level vision 
problem. SISR aims to recover a high-resolution (HR) image from a single low-resolution 
(LR) counterpart. Many AI companies have achieved prosperous development. Various 
network architecture designs and training strategies have emerged, continuously 
improving SR performance, especially the Peak signal-to-noise ratio (PSNR) value [2] [3]. 
The major drawback is that the PSNR metric fundamentally disagrees with the subjective 
evaluation of human observers. It tends to over-smoothed results without sufficient high-
frequency details. 

 
Generative Adversarial Networks were introduced to Super Resolution to favor 

more natural-looking images [4]. SRGAN is a milestone in obtaining visually pleasing 
images. The journey has seen the introduction to perceptual loss, proposed to optimize 
super-resolution models in a feature space instead of pixel space. The Basic SRGAN 
model is built with residual blocks and optimized using perceptual loss in a GAN framework 
[5]. Thus, SRGAN is a significant improvement over PSNR models in terms of the overall 
visual quality of reconstruction. However, there still exists a clear gap between SRGAN 
results and the ground-truth (GT) images. 

 
In this research, the researchers visit the commonly used Image Enhancement 

Techniques in Medical Image Processing, explore the critical components of SRGAN, and 
improve the model. The common approach to image reconstruction follows a classical 
pattern: reducing and removing unwanted noise with filters, cropping and resampling data 
for faster processing, using specified anatomical segmentation tools, and applying 
statistical tools to quantify the parts of the image. In recent years, some situation-specific 
enhanced processing methods such as Sparse Reconstruction of CT Images with low-
dose projection data by the authors of [6] proposed a wavelet frame-based regularization 
method. For efficient enhancement of noisy optical coherence tomography (OCT) images, 
the authors of [7] proposed a collaborative shock filtering to enhance details and layered 
structures better. Single Image super-resolution (SISR) is a fundamental low-level vision 
problem. SISR aims to recover a high-resolution (HR) image from a single low-resolution 
(LR) counterpart. Here, we want to recover high-quality CT Scan Images from degraded 
low-quality images. 

 
Major Highlights: 
The researchers aim to build CTsGAN, a low-resolution to high-resolution image 

enhancer for portable CT Scanner using Super Resolution. Single Image Super 
Resolution aims at reconstructing a high-resolution (HR) image from its low-resolution 
(LR) counterpart. The researchers implement the project by developing and improving the 
following modules:  

TANZ(ISSN NO: 1869-7720)VOL20 ISSUE7 2025

PAGE NO: 118



 

- Kth Order Degradation Module: To mimic real-world multi-level degradation, we 
employ a recursive degradation model. The low-resolution and noisy data is paired 
with high-resolution data to create training pairs.  

- Network Modeling: Simplify the network architecture of the generator by modifying 
the composition of the Residual-in-Residual Dense Block (RRDB) and boost the 
training by reintroducing batch normalization. Introduce Relativistic average 
Discriminator with U-Net architecture and Spectral Normalization.  

- Perceptual Loss: Improve the loss function by constraining features before 
activation and introduce voxel factor to adversarial loss. 

2. Related Works 

In recent years, the medical industry has observed a rise in demand for CT 
Scanners leading to the innovation of mobile/portable CT Scanners. There are many 
advantages of using mobile CT Scanners, provided that they do not compromise image 
quality. H. Andersson et al. [8] found a small statistically significant difference in subjective 
quality rating between portable CT Scanners and stationary CT Scanners. For overall 
image quality, 14% of portable CT images were rated grade 1 (poor quality) compared to 
4% of high-end stationary CT Scanners. S. Hermena et al. [9] explain the software 
conversion of data into images. Each pixel represents a two-dimensional projection of a 
three-dimensional volume, termed a voxel. Each voxel and pixel represent a number 
reflecting the amount of photon energy absorbed and measured by the detector. The 
image processor can retrieve and manipulate the values of every possible voxel as defined 
by the imaging software. The number of voxels represents the imaged tissue at different 
resolutions. A row of voxels that forms a line from one side of the image space to the other 
is called an attenuation profile [10]. The researchers introduce the voxel factor that aids in 
image reconstruction. 

 
The image super-resolution field [11-15] has witnessed a variety of development 

since the pioneering work on SRCNN [16-18]. To achieve visually pleasing results with 
accurate details, generative adversarial networks [19] are usually employed as loss 
supervision. The classical degradation model is widely adopted in blind SR methods. 
Gong et al. [20] proposed a flexible higher-order degradation model to synthesize more 
practical degradation. Dong et al. [21] proposed SRCNN to learn the mapping from LR to 
HR images. Zhang et al. [22] proposed to use effective residual dense blocks in SR, and 
they further explored a deeper network with channel attention, achieving state-of-the-art 
PSNR performance. He et al. [23] proposed a robust initialization method for the VGG-
style network. The researchers in this paper develop a compact and effective RRDB with 
a Batch Normalization Layer to aid in training a deeper network. 

 
A lot of work has been done in blind similarity retrieval, which is an important 

application for medical imaging. The researchers propose a general framework that can 
address blind similarity retrieval and be applied to voxel-based and volume-based images. 
Their methods are based on generating training pairs as close to real data as possible 
and then training a unified network on these pairs with cycle consistency loss. The 
degradations are constrained to mobile CT Scanners and cannot be well generalized with 
every image. 

 
Perceptual-driven approaches have also been proposed to improve the visual 

quality of SR results. Based on the idea of perceptual similarity, perceptual loss is 
proposed to enhance the visual quality by minimizing the error in a feature space instead 
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of a pixel space. Contextual loss is developed to generate images with natural image 
statistics by using an objective that focuses on the feature distribution rather than merely 
comparing the appearance. Rad et al. [24] proposed the SRGAN model that used 
perceptual loss and adversarial loss to favor outputs residing on the manifold of natural 
images. Sajjadi et al. [25] developed a similar approach and further explored the local 
texture-matching loss. Based on these works, Wang et al. [20] proposed spatial feature 
transformation to effectively incorporate semantics into an image and improve the 
recovered image. 

 
In the literature, photo-realism is usually associated with adversarial training, 

where a generator is pitted against samples from a real dataset to find where the two 
match. Several methods have been proposed to stabilize the training of deep models. For 
example, the residual path is developed to stabilize the training and improve performance. 
The residual scaling strategy was introduced by Szegedy et al. [26]. A relativistic 
discriminator can be used to increase the probability that generated data simultaneously 
is real and decrease the probability that real data are real by increasing the number of 
samples from which it learns. The researchers enhance SRGAN by employing a more 
effective Realistic average Discriminator with U-Net architecture and spectral 
normalization for stabilized training. 

 
With the increase in degradation space, the training becomes challenging. The 

discriminator requires a more powerful capability to discriminate realness from complex 
training outputs, while the gradient feedback from the discriminator needs to be more 
accurate for local detail enhancement. Thus, the researchers improve the VGG-style 
discriminator to a U-Net design. The U-Net structure and degradations also increase the 
training instability. Hence, the researchers employ spectral normalization regularization to 
stabilize the training dynamics. 

 
PSNR and SSIM are used to evaluate SR algorithms. However, these metrics 

fundamentally disagree with the subjective evaluation of human observers [27]. Ma’s 
score [28] and NIQE [29] calculate the perceptual index. Blau et al. [30] find that distortion 
and perceptual quality are typical tradeoffs. 

3. Materials and Methodology 

The main aim of this research is to restore and enhance the overall perceptual 
quality of CT Scan Images. In this section, the network architecture will be discussed, as 
the adaptation of the RaGAN discriminator, and the training method used to incorporate 
modified perceptual loss. The methodology includes modeling the network architecture, 
training the model, and testing it on different self-validation datasets. 

A. Kth Order Degradation Module 

The classical degradation model is usually adopted to synthesize the low-
resolution input. Generally, the ground truth image I, is first convolved with blur 
kernel k. Then, a down-sampling operation with scale factor r is performed. The 
low-resolution x is obtained by adding noise n. Finally, JPEG compression is also 
adopted as it is widely used in real-world images. 
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eq 3.1.1 

 
where D denotes the degradation process. 
 
The researchers adopt the above classical degradation model to synthesize 
training pairs. They found the trained model could handle some real samples. 
However, it still cannot resolve some complicated degradations in the real world, 
especially unknown noise, and complex artifacts. This is because the synthetic 
low-resolution images still have a large gap with realistic degraded images. The 
researchers thus extend the classical model to a high-order degradation process 
to model more practical degradations. 
 
For instance, if we want to restore a low-quality CT Scan image of a brain tumor 
downloaded from the Internet, its underlying degradation involves a complicated 
combination of the different degradation processes. Specifically, the original image 
of the CT Scan image was taken through a cell phone camera, which inevitably 
contains degradations such as camera blur, sensor noise, low resolution, and 
JPEG compression. The image was then edited with sharpening and resizing 
operations, bringing in overshoot and blurred artifacts. After that, it was uploaded 
to some social media applications (like WhatsApp for a second opinion), which 
introduced further compression and unpredictable noises. As digital transmission 
will also bring artifacts, this process becomes more complicated when the image 
spreads several times on the Internet. 
 
A k-order model involves a repeated degradation process, where each degradation 
process adopts the classical degradation model (eq 3.1.1) with the same 
procedure but different hyperparameters. To keep the image resolution in a 
reasonable range, the down-sampling operation in eq 3.1.1 is replaced with a 
random resize operation. 
 
Empirically, we adopt a second-order degradation process, as it could resolve 
most real cases while keeping simplicity. 
 

� =  � (�)  = �(�� � . . . � �� � ��)(�)              
eq 3.1.2 

 
It is worth noting that the improved high-order degradation process is imperfect 
and could not cover the whole degradation space in the real world. Instead, it 
merely extends the solvable degradation boundary of previous blind SR methods 
by modifying the data synthesis process. 
 
Ringing artifacts often appear as spurious edges near sharp transitions in an 
image. They visually look like bands or ghosts near the edges. Overshoot artifacts 
are usually combined with ringing artifacts, which manifest themselves as an 
increased jump at the edge transition. The main cause of these artifacts is that the 
signal is bandlimited without high frequencies. These artifacts are common and 
usually produced by a sharpening algorithm, JPEG compression, etc. 
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The researchers employ the sinc filter, an idealized filter that cuts off high 
frequencies, to synthesize ringing and overshoot artifacts for training pairs. The 
sinc filter kernel can be expressed as 
 


(�, �)  =  [��/(��√(�� + ��)]��(��√(�� + ��)             
eq 3.1.3 

 
Where (i, j) is the kernel coordinate; ω� is the cutoff frequency and j1 is the first-
order Bessel function of the first kind. It can synthesize ringing and overshooting 
artefacts (especially introduced by over-sharp effects). 
 
The researchers adopt SINC filters in two places: the blurring process and the last 
step of the synthesis. The order of the last SINC filter and JPEG compression is 
randomly exchanged to cover a larger degradation space, as some images may 
be first over-sharpened and then have JPEG compression while some images may 
first do JPEG compression followed by sharpening operation. 

B. Network Architecture 

SRGAN [2] is a significant milestone in solving the single-image SR problem. 
Wang et al. [31] proposed a modification to the building blocks of SRGAN 
architecture. They introduced Residual-in-Residual Dense Block (RRDB), which 
combined multi-level residual networks and dense connections to make networks 
more robust. We propose to reintroduce the Batch Normalization Layer in the 
RRDB structure to enable a higher learning rate and faster training. Due to the 
sheer nature of software in the CT Scanners that converts the data into images, 
we can reduce the number of RRDB units required in the network. 
 

 
Figure 1. Generator architecture with Batch normalization layer added in RRDB structure. 
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In addition to the improved architecture, we also exploit several techniques to 
facilitate training a very deep network. First, residual scaling, i.e., scaling down the 
residuals by multiplying a constant between 0 and 1 before adding them to the 
main path to prevent instability. Second, smaller initialization, as we empirically 
find residual architecture is easier to train when the initial parameter variance 
becomes smaller. 

C. U-Net Discriminator with Spectral Normalization 

The standard discriminator D in SRGAN [2] estimates the probability of input image 
I being real or fake. This results in a vanishing gradient problem. In this situation, 
the discriminator is unable to provide enough feedback for the generator to learn 
as the error for the discriminator eventually tends to 0 (vanishing gradient). The 
researchers replace the standard discriminator D with the Relativistic average 
Discriminator, DRa [21]. The Relativistic average Discriminator tries to predict the 
probability that a real image Ir is relatively more realistic than a fake one If. 
 
The standard discriminator can be expressed as 
 

 (!)  =  "(#(!)) 
 
where σ is the sigmoidal function and C(I) is the non-transformed discriminator 
output. Thus, DRa is formulated as DRa(Ir, If) = σ(C(Ir) - EIf[C(If)]), where EIf[.] 
represents the operation of taking the average for all fake data in the mini-batch. 

 
Figure 2. Network Architecture of U-Net Discriminator with Spectral 

Normalization 

 
As the researchers aim to address a large degradation space, the discriminator 
requires a greater discriminative power for complex training outputs. Instead of 
discriminating global styles, it also needs to produce accurate gradient feedback 
for local texture. Inspired by [21], the researchers also improved the VGG-style 
discriminator to a U-Net design with skip connections (Fig 3.3.1). The U-Net 
structure outputs the realness value for each pixel and can provide detailed per-
pixel feedback to the generator. The researchers employ spectral normalization 
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regularization to stabilize the training dynamics. It is also beneficial to alleviate the 
over-sharp and annoying artifacts generated during GAN training. Thus, the 
researchers can establish a good balance between local details enhancement and 
artefact suppression. 

D. Perceptual Loss 

The researchers improve on the perceptual loss Lpercep by constraining on features 
before activation as introduced in [32]. Wand et al. [31] proposed to tackle two 
drawbacks of the conventional method. First, by using the features before 
activation, the features do not become sparse. The sparse activation provides 
weak supervision and leads to inferior performance. Second, using features before 
activation helps with tackling inconsistent reconstructed brightness. 
 

 
Figure 3. Grayscale Histogram Comparison between before activation and 

after activation in terms of brightness. 

 

Hence, the total loss for the generator is: 

�� = ������� +���
�� +���         

 eq 3.4.1 

 
where L1 = Exi||G(xi) - y||1 is the content loss that evaluates the 1-norm distance 
between the generated image G(xi) and the ground truth, and λ, η are the 
coefficients to balance the different loss terms. 
 
The quality of the generated image is directly proportional to the number of voxels 
provided to the reconstruction algorithm. Thus the researchers introduce the voxel 
factor, vi, in the generator loss function to get: 

$�% =  ������� +  ���
�� +  ���    

   eq 3.4.2 
 

where Lv = Exi||Evi[G(xi) - y]||. The introduction of the voxel factor determines the 
order of reconstruction and reads the linear attenuation profile of the image (from 

TANZ(ISSN NO: 1869-7720)VOL20 ISSUE7 2025

PAGE NO: 124



 

metadata). It is based on a fine-tuned VGG network for material recognition, which 
focuses on texture rather than the object. 

E. Training Process 

Before the researchers jump into the training process, the degradation system 
needs to be discussed. The researchers try to mimic real-world multi-level 
degradation by following the steps for k iterations. First, they typically apply 
Gaussian blur, followed by resizing the image (down sampling). Then they 
introduce random noise to the channel to imitate unpleasant artefacts followed by 
JPEG compression with a Sinc kernel as employed by many social media 
platforms. They repeat this process k times (where k is a different random constant 
for every 100 image batches). Now that they have the low-resolution dataset 
available, they can now start training the model. 

 
Figure 4. System flow diagram showcasing the three major modules of 

CTsGAN Training - Kth order degradation, Model Training, and User input interface. 

 
The training process is divided into two stages. The researchers train a PSNR-
oriented model with L1 loss. They initialize the earning rate as 1 ' 10)* and decay 

by a factor of 4 every 4 ' 10, of the mini-batch update. This trained PSNR model 
serves as a starting point for the generator. The generator is trained with a 

combination of perceptual and adversarial loss LGv with � = 1 ' 10-2, � = 2 '
10-2, and � = 2. Here, the learning rate is set to 2 ' 10)* and decays with a factor 
of 2 every 1000 iterations (for 10,000 iterations). Using a pre-trained PSNR-based 
model with L1 loss helps avoid undesired local optima. The discriminator now 
receives relatively better-generated images instead of extremely fake ones, thus 
helping to focus more on texture discrimination. The researchers use the Adam 
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optimizer with /
1

= 0.9 and /
2

= 0.999. As every GAN is trained, they alternate 

between updating the generator and discriminator until the model converges. 
Instead of the 16-residual and 23-RRDB blocks of ESRGAN, they employ the 
generator with 16 RRDB blocks only. 

 

  
Figure 5. Conversion graph for Loss function of Discriminator and 

Generator. 

 
The researchers implement their models with the PyTorch framework and deploy 
CTsGAN on a web application using the Streamlit library. For training, they 
primarily use the CT Medical Images and COVID-19 CT Scans dataset, which 
provides high-quality (2k resolution) images. The total number of images including 
both datasets is 800. The researchers have found that using this large dataset with 
richer textures helps the generator produce more natural results. The researchers 
train their models in the grayscale channel and augment the dataset with random 
horizontal flips and 90-degree rotations. They evaluate their model on a grayscale 
converted PRIM self-validation dataset. 

F. Web Application 

CTsGAN is a powerful Generative Adversarial Network that can be inferred 
through command line prompts. The inference script takes input such as the input 
directory, model name, output directory, out scaling factor, tiles, padding, and up 
sampler. This can be difficult to manage for many users who are not well-versed 
in the technology. Hence, the researchers create a user-friendly web application 
to deploy and host CTsGAN using the Streamlit library. Using Hydralit 
components, they create a multi-page navigation bar to connect the home app, 
references, and source code page. The home app hosts the basic functionality of 
CTsGAN. With the help of uploading widgets and sidebar selection boxes, they 
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call the inference script in the backend whenever an image is uploaded. The image 
is then processed and displayed in comparison with the original image. The user 
can also download the full-size output image to save and access it locally at any 
time. The researchers offer X2 and X4 scaling factor options for CTsGAN in our 
Web Application for users with various device compatibility, who can enhance the 
images according to their convenience. 
 

 
Figure 6. Project Snapshot of Home Page - Web Application for CTsGAN. 

 
In Figure 6, the researchers provide a snapshot of the homepage of the web 
application for CTsGAN. As visible in Figure 6, the web application’s homepage 
provides the option to upload the image on the left-hand side of the page, 
providing two alternatives - drag-and-drop image or browse image file from local 
machine. The researchers also mention the size limit and extension of image for 
users to choose image from. 
 
In Figure 7 below, the researchers provide another snapshot from the web 
application where the customizing options for inferring CTsGAN are displayed for 
users to choose from. As visible in the figure and mentioned before, the 
researchers provide options in the form of radio buttons in the webpage for the 
two scaling factors. Also, a drop-down menu is also provided for users to input 
the restoration strength. After that, a slider is available for users to input the 
number of tiles. 
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Figure 7. Customizing options for inferring CTsGAN Web Application. 

4. Results & Discussions 

The researchers compare their final model, CTsGANX4v2, on the Chest CT Scan 
Image test dataset with state-of-the-art methods including Blind SRGAN [33], Wavelet 
frame-based Sparse Reconstruction [34], and Enhanced SRGAN [31]. They present 
representative qualitative results since there is no effective and standard metric for 
perceptual quality. 
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Fig 8: Qualitative comparisons on diverse samples with the upscaling factor of CTsGAN outperform 
previous approaches in removing artifacts, restoring texture details, and optimal brightness, further 
boosting visual sharpness. Other methods typically fail to remove complicated artifacts or fail to 
restore the natural texture and sharp edges where required. 

 
It can be observed that the proposed CTsGAN outperforms previous approaches 

in sharpness, brightness, and details. For instance, CTsGAN can produce sharper and 
more dynamically contrasting images. It can generate finer details such as smaller tumor 
nodules with sharp boundaries where the Blind SRGAN failed to capture the node 
boundaries effectively. The currently popular methods like Sparse Reconstruction and 
shock filtering techniques cannot enlarge the image size and create a relatively less clear 
image when compared to PSNR-based models. 

 
ESRGAN [31] outperforms every other super-resolution GAN in perceptual quality, 

and we can reach a similar level of perceptual quality with CTsGAN, with much faster 
performance (compared to ESRGAN). CTsGAN also gets rid of any unpleasant artefacts 
generated in Blind SRGAN and produces results with natural texture. 

 
The researchers provide the non-reference image quality assessment - NIQE for 

reference. It's important to note that existing perceptual quality metrics cannot well reflect 
the actual human perceptual preferences on a fine-grained scale. 
 

Table 1: NIQE scores on diverse datasets 
 

(The lower the score, the better the resolution). 

Data Sets ESRGAN CTsGAN 

CT Medical Images 6.7715 4.5314 
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CoVID-19 CT Scan Images 6.7480 5.0247 

Chest CT Scan Images 
(test) 

3.5245 2.8191 

 
The Table 1 provided by the researcher delves into the Natural Image Quality Evaluation 
to assess the quality of images from a human perspective. The researchers provide a 
comparison of the performance of the two Generative Adversarial Networks based on 
this metric i.e. the ESRGAN and CTsGAN. The table shows that the CTsGAN model 
produced better quality images on all four datasets according to the NIQE score. The 
NIQE score for ESRGAN on CT medical images is 6.7715, whereas the NIQE score for 
CTSGAN on CT medical images is 4.5314.  
 
The researchers also provide an additional qualitative comparison with other super-
resolution models like the DAN, Bicubic and BSRGAN respectively in Figure 9 below. 
 

 
Figure 9: Additional qualitative comparison with previous super-resolution models 

5. Conclusion and Future Work 

In conclusion, the researchers have presented CTsGAN, a variation of the 
ESRGAN model, that achieves consistently better perceptual quality for naturally 
degraded images than previous Image Enhancement methods. Since they typically deal 
with grayscale images, the network architecture is simplified significantly (reduced 
computational complexity). They have reintroduced the Batch Normalization Layer to the 
RRDB Block to create a high-performance novel architecture. 

 
The addition of the BN Layer helps in faster training with an increased learning 

rate. CTsGAN provides a stunning 2.622 PI, 15.47 RMSE on grayscale PRIM self-
validation with modified Perceptual Loss. The researchers observe that CTsGAN can 
overcome the disadvantages of existing methods and generate high-resolution images 
free of unpleasant artefacts efficiently. The researchers have also deployed their models 
(scaling factors 2 and 4) on a user-friendly web application using the Streamlit library. 
Users can upload their images, compare the output with the input, and also download the 
full-size enlarged image via the web application. CTsGAN aids medical professionals with 
high-quality CT Scans which enables them to make important decisions effectively. 
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Some of the prospective future work on this project is to make CTsGAN compatible 

with video inputs and work in real-time scenarios. CTsGAN is open-sourced and we 
encourage the development of ideas and contributions. 
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