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1. Description of the problem 

Suppose R be the real line and R+ be the set of nonnegative real numbers. Let 

0 [ ,0]I δ= −  be a closed and bounded interval in R  for some real number 0δ >  and 

0 .J I R= ∪ Let C denote Banach space of continuous real-valued functions φ on 0I  

with the supremum norm 
C

⋅  defined by 

0

sup ( )
C

t I

tφ φ
∈

=  

Since, C is a Banach space with this supremum norm. For a fixed t R+∈ , let tu  

denote the element of C defined by 

  ( ) ( ), [ ,0].tu u tθ θ θ δ= + ∈ −  

Space C is called the history of the past interval 0I  for the functional differential 

equations to describing the past history of the problems in question. 

Let ( )CRB R+ denote the class of functions : {0}a R R+ → − satisfying the following 

properties: 

(i) a  is continuous 

(ii) lim ( )
t

a t
→∞

= ±∞  and 
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(iii) (0) 1.a =  

Given a function Cφ ∈ ,  

Suppose the following advanced functional differential equation,  

                          
[ ( ) ( )]' ( , ( ), , ( ( ))) ( , ( ), , ( ( ))) a .e. t

(0)

t ta t u t t u t u u u t t u t u u u t R

u

α β

φ

+= + ∈

=
(1.1)  

where, ( ), : , : .a CRB R R R C R R R R C R Rα β+ + +∈ × × × → × × × → We discuss above 

nonlinear functional differential equations on unbounded intervals of real line for 

existence as well as for characterizations of the solution via classical fixed point 

theorems in Banach spaces 

2. Auxiliary Results 

Suppose U be a non-empty set and suppose : .T U U→  An invariant point under T  

in U is called a fixed point of ,T  that is, the fixed points are the solutions of the 

functional equation    Tu u= . 

 we state some fixed point theorems useful for proving main results.  

SupposeU be an infinite dimensional Banach space with the norm ⋅ . A mapping 

:Q U U→ is called D -Lipschitz if there is a continuous and nondecreasing function 

: R Rφ + +→  satisfying  

( )Qu Qv u vφ− ≤ −  

for all , ,u v U∈ where, (0) 0φ = . If (r) , 0,kr kφ = > then Q  is called Lipschitz with the 

Lipschitz constant k.  

Theorem 2.1 (Granas and Dugundji [14]). Let S  be a non-empty, closed, convex 

and bounded subset of the Banach space U  and let :Q S S→  be a continuous and 

compact operator. Then the operator equation  Qu u=                                  (2.1) 

has a solution in S . 

Suppose the  following fixed point theorem of Burton [3] . 

Theorem2.2 (Dhage [7]). Let S  be a closed, convex and bounded subset of the 

Banach space U  and let :A U U→ and :B S U→ be two operators such that  

       (a) A is nonlinear D-contraction 
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      (b) B is completely continuous, and 

      (c) u Au Bv u S= +  ∈ for all .v S∈  

Then the operator equation      Au Bu u+ =                                                      (2.2) 

has a solution in S .  

Theorem 2.3. (Dhage [11]). Suppose S  be a non-empty closed, convex and 

bounded subset of the Banach AlgebraU  and let :A U U→ and :B S U→ be two 

operators such that  

    (a) A is D-Lipschitz with D-function ψ , 

      (b) B is completely continuous, 

      (c) u AuBv u S=  ∈ for all v S∈ and 

        (d) ( ) ,M r rψ < where { }( ) sup : .M B S Bu s S= = ∈  

Then the operator equation 

                                                 AuBu u=                                                          (2.3) 

has a solution in S . 

3. Characterizations of Solutions 

Define a standard supremum norm ⋅ and a multiplication"."  in 0( , )BC I R R+∪ by  

0

sup (t)
t I R

u u
+∈ ∪

=  and ( ( )) ( ) ( ), .uv t u t v t t R+= ∈  

We denote the space of Lebesgue integrable functions on R+  

and the norm 1
L

⋅ in 1( , )L R R+  is defined by  

1

0

( ) .
L

u u t ds

∞

=   

let us assume the 
0( , )E BC I R R+= ∪  and let Ω  be a non-empty subset of U . Let 

:Q E E→  be a operator and consider the following operator equation in E,  

                                                        ( ) ( )Qu t u t=                                          (3.1) 

for all 0 .t I R+∈ ∪  Below we give different characterizations of the solutions for the 

operator equation (3.1) in the space 0( , ).BC I R R+∪  
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Definition 3.1. We say that solutions of the operator equation (3.1) are locally 

attractive if there exists a closed ball 0
( )

r
B u  in the space 0( , )BC I R R+∪ for some 

0 0( , )u BC I R R+∈ ∪  such that for arbitrary solutions ( )u u t=  and ( )v v t=  of equation 

(3.1) belonging to 0
( )

r
B u we have that 

                                                        ( )lim ( ) ( ) 0
t

u t v t
→∞

− =                                    (3.2) 

In the case when the limit (3.2) is uniform with respect to the set 0
( )

r
B u , i.e., when 

for each 0ε > there exists 0T >  such that 

                                                              ( ) ( )u t v t ε− ≤                                     (3.3) 

for all 0, ( )ru v B u∈  being solutions of (4.1) and for t T≥ , we will say that solutions of 

equation (3.1) are uniformly locally attractive on 0I R+∪ . 

Definition 3.2. A solution ( )u u t=  of equation (3.1) is said to be globally attractive if 

(3.2) holds for each solution ( )v v t=  of (3.1) in 0( , )BC I R R+∪ . In other words, we 

may say that solutions of the equation (3.1) are globally attractive if for each arbitrary 

solutions ( )u u t=  and ( )v v t=  of equation (3.1) in  0( , )BC I R R+∪ , the condition (3.2) 

is satisfied. In the case when the condition (3.2) is satisfied uniformly with respect to 

the space 0( , )BC I R R+∪ , i.e., for every 0ε > there exists 0T >  such that the 

inequality (3.2) is satisfied for all 
0, ( , )u v BC I R R+∈ ∪ being the solutions of (3.1) and 

for t T≥ , we will say that solutions of equation (3.1) are uniformly globally attractive 

on 
0I R+∪ . 

4. Attractivity Result 

We discuss the problem(2.1) for attractivity characterization of the solutions on 

unbounded interval 0I R+∪ . We need the following definitions . 

Definition 4.1. By a solution for the differential equation (1.1) we mean a function  

0( , ) ( , )u BC I R R AC R R+ +∈ ∪ ∩  such that 

    (i) The function ( ) ( )t a t u ta  is absolutely continuous on R+ , and 

    (ii) u  satisfies the equations in (1.1), 
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where ( , )AC R R+ is the space of absolutely continuous real-valued on right half real 

axis R+ . 

Definition 4.2. Function : R R C R Rα + × × × → is caratheodory if  

    (i) ( , , , ( )t t u v u uαa  is measurable for all u R+∈ and v C∈ , and 

   (ii) ( , ) ( , , , ( ))u v t u v u uαa  is continuous for all t R+∈ . 

(H1). There exists a continuous function : R Rγ + +→ such that  

                   ( , , , ( )) ( ) . .t u v u u t a e t Rβ γ +≤ ∈ for all u R+∈ and v C∈ .  

Moreover, we assume  that   
0

lim ( ) ( ) 0.

t

t
a t s dsλ

→∞
=  

(H2). (0) 0.φ ≥  

Remark 4.1. If the hypothesis (H1) holds and ( )a CRB R+∈ , then ( , )a BC R R+∈ and the 

function :w R R+ →  defined by the expression 
0

( ) ( ) ( )

t

w t a t s dsγ=  is continuous on 

.R+  Thus, the number 0sup ( )tW w t≥=  exists. 

Theorem 4.1.Suppose that the hypotheses (H1) holds. Then the functional 

differential equation(1.1) has a solution and solutions are uniformly globally attractive 

on  0I R+∪ . 

Proof. Supp0se Set 
0( , )U BC I R R+= ∪ . Define an operator Q on X by 

                                          

0

0

(0) ( ) ( ) [ ( , ( ), , ( )) ( , ( ), , ( ))] ,
( )

( ) .

t

s sa t a t s u s u u u s u s u u u ds if t R
Qu t

t if t I

φ α β

φ

+


+ + ∈

= 
 ∈

  (4.1) 

We prove that Q defines a mapping :Q U U→ . Suppose u U∈ be arbitrary. Clearly, 

Qu  is a continuous function on  0I R+∪ . We prove that Qu  is bounded on 0I R+∪ . 

Therefore, if t R+∈ ,we obtain: 

0

0

| ( ) | | (0) | | ( ) | | ( ) | | [ ( , ( ), , ( )) ( , ( ), , ( ))] |

| (0) | | ( ) | | ( ) | ( ) .

t

s s

t

Qu t a t a t s u s u u u s u s u u u ds

a t a t s ds

φ α β

φ γ

≤ + +

≤ +




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Since 
0

lim ( ) ( ) 0

t

t
a t s dsγ

→∞
= , the function :w R R+ →  defined by 

0

( ) ( ) ( )

t

w t a t s dsγ=  is 

continuous, there is a constant 0W >  such that 

0 0
0

sup ( ) sup ( ) ( ) .

t

t t

w t a t s ds Wγ
≥ ≥

= ≤  

Thus, 

| ( ) | | (0) | || || || || || ||Qx t a W a Wφ φ≤ + ≤ +  

for all t R+∈ . Similarly, if 0t I∈ , then ( ) || ||Qu t φ≤ . As a result, we have  

                                     | | ( || || 1)|| ||Qu a Wφ≤ + +                                                 (4.2) 

for all u U∈ and thus, Q maps U  into U  itself. Define a closed ball (0)
r

B centred at 

the origin of radius r, where ( || || 1)|| ||r a Wφ= + + . Thus Q defines a mapping 

: (0)
r

Q U B→ . particular : (0) (0)
r r

Q B B→ . We verify that Q satisfies all the conditions 

of Theorem 2.2. Firstly, we show that Q is continuous on (0)
r

B . For this,, suppose a  

fix arbitrarily 0ε >  ,suppose{ }nu  be a sequence of points in (0)
r

B converging to a 

point (0)
r

u B∈ . we get: 

0

| ( , ( ), ( ), ( )) ( , ( ), ( ), ( )) |
| ( )( ) ( )( ) | | ( ) |

| ( , ( ), ( ), ( )) ( , ( ), ( ), ( )) |

t
n n n n

n

n n n n

s u s u s u u s u s u s u u ds
Qu t Qu t a t

s u s u s u u s u s u s u u ds

α θ α θ

β θ β θ

+ − +
− ≤ +

+ − +  

0

0

[ ( , ( ), ( ), ( )) | ( , ( ), ( ), ( )) |
| ( ) |

| ( , ( ), ( ), ( )) | ( , ( ), ( ), ( )) |]

2 | ( ) | ( )

2 ( )

t
n n n n

n n n n

t

s u s u s u u s u s u s u u
a t

s u s u s u u s u s u s u u ds

a t s ds

w t

α θ α θ

β θ β θ

γ

+ + +
≤

+ + +

≤

≤



  

Thus, by hypothesis (H1), we observe that there exists a 0T >  such that 

( )w t for t Tε≤ ≥ . Hence, for t T≥ from  (5.2) derive that 

| ( )( ) ( )( ) | 2nQu t Qu t ε− ≤  as n → ∞ .                                                    (4.3) 

Next, Assume that [0, ]t T∈ . Thus, following arguments similar to Dhage [7],by 

Lebesgue dominated convergence theorem, we have 
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[ ]

0

0

lim ( ) lim (0) ( ) ( ) ( ( , ( ), ( ), ( )) ( ( , ( ), ( ), ( ))

(0) ( ) ( ) lim ( ( , ( ), ( ), ( )) ( ( , ( ), ( ), ( ))

( ) (4.4)

t

n n n n n n n n n
n x

t

n n n n n n n n
x

Qu t a t a t s u s u s u u s u s u s u u ds

a t a t s u s u s u u s u s u s u u ds

Qu t

φ α θ β θ

φ α θ β θ

→∞ →∞

→∞

 
= + + + + 

 

= + + + +

=




 

for all [0, ]t T∈ . Similarly, if 0t I∈ , then 

lim ( ) ( ) ( )
n

n
Qu t t Qu tφ

→∞
= =  

Hence, nQu Qu→ as n → ∞  uniformly on R+  and hence Q is a continuous operator 

on (0)
r

B  into (0)
r

B . 

Then , we prove that B is compact operator on (0)
r

B . Or this, it is enough to prove 

that every sequence { }nQu in ( )(0)
r

Q B  has a Cauchy subsequence. By hypotheses 

(B2) and (B3), 

0

| ( )( ) | | (0) | | ( ) | | ( ) | | ( , ( ), ( ), ( )) ( , ( ), ( ), ( )) |

(|| ( ) || 1) (0) ( )

(|| ( ) || 1) || || ( ) (4.5)

t

n n n n n n n n nQu t a t a t s u s u s u u s u s u s u u ds

a t w t

a t w t

φ α θ β θ

φ

φ

≤ + + + +

≤ + +

≤ + +



for all t R+∈ . Taking supremum over t, we have | | ( || || 1)|| ||nQu a Wφ≤ + +  

for all n N∈ . This proves that { }nQu is a uniformly bounded sequence in ( )(0)
r

Q B . 

Then, we prove that ( )(0)
r

Q B is also an equicontinuous set in U. Suppose 0ε > be 

given. As lim ( ) 0
t

w t
→∞

= , there is a real number 1 0T >  such that | ( ) |
8

w t
ε

<  for all 1t T≥ . 

Similarly,  lim ( ) 0
t

a t
→∞

= , for above 0ε > , there is a real number 2 0T >  such that  

| ( ) |
8 | (0) |

a t
ε

φ
<  for all 2t T≥ .Thus, if 1 2max{ , }T T T= , then | ( ) |

8
w t

ε
<  and 

| ( ) |
8 | (0) |

a t
ε

φ
<  for all t T≥ . Suppose 0,t I Rτ +∈ ∪  be arbitrary. If 0,t Iτ ∈ , then by 

uniform continuity of 0on Iφ . For above ε we have 1 0δ >  which is a function of only 

ε  such that  

1| | | ( ) ( ) | | ( ) ( ) |
4

n nt T Qu t Qu t
ε

δ τ φ φ τ− <  − = − <  
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for all n N∈ . If , [0,T]t τ ∈ , we have 

0

0

| ( ) ( ) | | (0) | | ( ) ( ) |

[ ( , ( ), ( ), ( )) ( , ( ), ( ), ( ))]
| ( ) |

( ) [ ( , ( ), ( ), ( )) ( , ( ), ( ), ( ))]

n n

t

n n n n n n n n

n n n n n n n n

Qu t Qu a t a

s u s u s u u s u s u s u u ds
a t

a s u s u s u u s u s u s u u ds

τ

τ φ τ

α θ β θ

τ α θ β θ

− ≤ −

+ + +

+

− + + +





0

0

| (0) | | ( ) ( ) |

[ ( , ( ), ( ), ( )) ( , ( ), ( ), ( ))]
| ( ) |

( ) [ ( , ( ), ( ), ( )) ( , ( ), ( ), ( ))])

t

n n n n n n n n

t

n n n n n n n n

a t a

s u s u s u u s u s u s u u ds
a t

a s u s u s u u s u s u s u u ds

φ τ

α θ β θ

τ α θ β θ

≤ −

+ + +

+

− + + +





 

 

                    
0

0

[ ( , ( ), ( ), ( )) ( , ( ), ( ), ( ))]
| ( ) |

( ) [ ( , ( ), ( ), ( )) ( , ( ), ( ), ( ))]

t

n n n n n n n n

n n n n n n n n

s u s u s u u s u s u s u u ds
a

a s u s u s u u s u s u s u u ds

τ

α θ β θ
τ

τ α θ β θ

+ + +

+

− + + +





 

0

0

| (0) | | ( ) ( ) | | ( ) ( ) |

[ ( , ( ), ( ), ( )) ( , ( ), ( ), ( ))]

| ( )| [ ( , ( ), ( ), ( )) ( , ( ), ( ), ( ))]

[ ( , ( ), ( ), ( )) ( , ( ),
| ( ) |

t

n n n n n n n n

t

n n n n n n n n

n n n n n n

a t a a t a

s u s u s u u s u s u s u u ds

a s u s u s u u s u s u s u u ds

s u s u s u u s u s u
a

φ τ τ

α θ β θ

τ α θ β θ

α θ β
τ

≤ − + −

+ + + +

+ + + +

+ +

+





0

0

( ), ( ))]

( ) [ ( , ( ), ( ), ( )) ( , ( ), ( ), ( ))]

t

n n

n n n n n n n n

s u u ds

a s u s u s u u s u s u s u u ds

τ

θ

τ α θ β θ

+

− + + +





 

   

1

0

0

| (0) | | ( ) ( ) | | ( ) ( ) | ( ) ( )

| (0) | | ( ) ( ) | | ( ) ( ) | ( ) ( ) ( )

| (0) | | ( ) ( ) | | ( ) ( ) | ( ) ( )

T t

T

T

L

a t a a t a s ds a s ds

a t a a t a s ds a p t p

a t a a t a a p t p

φ τ τ γ γ

φ τ τ γ τ

φ γ τ τ τ

≤ − + − +

≤ − + − + −

 ≤ + − + − + − 

 

  

where, 
0

( ) ( )
t

p t s dsγ=   and 1

0

( )
L

s dsγ γ
∞

=  . 
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By uniform continuity of the functions a and p on [0, ]T , for above ε . we have the 

real numbers 
2δ and 

3δ  which are the functions of only ε  such that 

1

2| | | ( ) ( ) |
8 (0)

L

t a t a
ε

τ δ τ
φ γ

− <  − <
 + 

 

and 

3
| | | ( ) ( ) |

8
t p t p

a

ε
τ δ τ− <  − <  

Suppose 4 2 3min{ , }δ δ δ= . Then 

4| | | ( ) ( ) |
4

n nt Qu t Qu
ε

τ δ τ− <  − <  

for all n N∈ . Similarly, if 0t I∈ and [0, ]Tτ ∈ , then we have  

| ( ) ( ) | | ( ) (0) | | (0) ( ) | .n n n n n nQu t Qu Qu t Qu Qu Quτ τ− ≤ − + −  

Consider 5 1 4min{ , } 0δ δ δ= >  which is a function of only ε . Hence by estimated facts, 

follows that 

5| | | ( ) ( ) |
2

n nt Qu t Qu
ε

τ δ τ− <  − <  

for all n N∈ . 

Again, if ,t Tτ > ,  we have a real number 6 0δ >  which is a function of only ε  such 

that  

0

0

| ( ) ( ) | | (0) | | ( ) ( ) |

[ ( , ( ), ( ), ( )) ( , ( ), ( ), ( ))]
( )

( ) [ ( , ( ), ( ), ( )) ( , ( ), ( ), ( ))]

| (0) | | ( ) | | (0) | | ( ) ( ) ( )

n n

t

n n n n n n

n n n n n n

Qu t Qu a t a

s u s u s u s s u s u s u s ds
a t

a t s u s u s u s s u s u s u s ds

a t a w t w

τ

τ φ τ

α θ θ β θ θ

α θ θ β θ θ

φ φ τ τ

ε

− ≤ −

+ + + + +

+

− + + + + +

≤ + + +

<





4 4

ε
+

 

for all n N∈ , whenever 6| |t τ δ− < . Similarly, if 0,t I Rτ +∈ ∪  with t T τ< < ,  ,we have 

| ( ) ( ) | | ( ) ( ) | | ( ) ( ) | .n n n n n nQu t Qu Qu t Qu T Qu T Quτ τ− ≤ − + −  
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Consider 5 6min{ , } 0δ δ δ= >  which is a function of only ε . Thus by above estimated 

facts, follows that 

| ( ) ( ) |
2

n nQu t Qu T
ε

− <  and | ( ) ( ) |
2

n nQu T Qu
ε

τ− <  

for all n N∈ , | |t τ δ− < . As , | ( ) ( ) |n nQu t Qu τ ε− <  for all 0,t I Rτ +∈ ∪  ,for  all n N∈ ,  

| |t τ δ− < . This proves that { }nQu is a equicontinuous sequence in U . From Arzela-

Ascoli theorem that { }nQu  has a uniformly convergent subsequence on the compact 

subset 0 [0, ]I T∪  of 0I R∪ . Without loss of generality, call subsequence to be the 

sequence itself. We prove that { }nQu  is Cauchy in U . Now | ( ) ( ) | 0nQu t Qu t− →  as 

n → ∞  for all  0 [0, ]t I T∈ ∪ . Thus for given 0ε >  there exists an 0n N∈  such that 

0

[ ( , ( ), ( ), ( )) ( , ( ), ( ), ( ))]

sup ( )
2

[ ( , ( ), ( ), ( )) ( , ( ), ( ), ( ))]

n n n n n n n np

p T

s u s u s u u s u s u s u u

a p ds

s u s u s u u s u s u s u u
δ

α θ β θ
ε

α θ β θ
− ≤ ≤

+ + +

<

− + + +
  

for all 0,m n n≥ . Hence, if 
0,m n n≥ , we have 

0

[ ( , ( ), ( ), ( )) ( , ( ), ( ), ( ))]

sup ( )
[ ( , ( ), ( ), ( )) ( , ( ), ( ), ( ))]

[ ( , ( ), ( ), ( )) ( , ( ), ( ), ( ))]
sup ( )

m m m m m m m m

t

m n
t n n n n n n n n

m m m m m m m m

t T

s u s u s u u s u s u s u u

Qu Qu a t ds
s u s u s u u s u s u s u u

s u s u s u u s u s u s u u
a p

δ

δ

α θ β θ

α θ β θ

α θ β θ

− ≤ <∞

− ≤ <

+ + +

− =
− + + +

+ + +
<



0

0

[ ( , ( ), ( ), ( )) ( , ( ), ( ), ( ))

[ ( , ( ), ( ), ( )) ( , ( ), ( ), ( ))
sup ( )

[ ( , ( ), ( ), ( )) ( , ( ), ( ), ( ))

.

p

n n n n n n n n

p

n n n n n n n n

p T n n n n n n n n

ds
s u s u s u u s u s u s u u

s u s u s u u s u s u s u u
a p ds

s u s u s u u s u s u s u u

α θ β θ

α θ β θ

α θ β θ

ε

≥

− + + +

 + + + 
+  

+ + + + 

<





 

This proves that ( ){ } (0)
n r

Qx Q B X⊂ ⊂  is Cauchy. Since X is complete, { }nQx  

converges to a point in X . Since ( )(0)
r

Q B  is closed { }nQx  converges to a point in 

( )(0)
r

Q B . Hence ( )(0)
r

Q B is relatively compact .Consequently, Q  is a continuous 

and compact operator on (0)
r

B  into itself. From  Theorem 2.2 to the operator Q  on 
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(0)
r

B  gives Q  has a fixed point in  (0)
r

B  which proves that the problem(1.1) has a 

solution  on 0I R+∪ . 

Finally, to prove that the solutions are uniformly attractive on 
0I R+∪ . Suppose 

, (0)
r

x y B∈ be any two solutions of the problem (3.1) defined on 
0I R+∪ . Then, 

0

0

0

0

( ) [ ( , ( ), , ( )) ( , ( ), , ( ))]

( ) ( )

( ) [ ( , ( ), , ( )) ( , ( ), , ( ))]

( ) [ ( , ( ), , ( )) ( , ( ), , ( ))]

( ) [ ( , ( ), , ( )) ( , ( ), , ( ))]

2

t

s s

t

s s

t

s s

t

s s

a t s u s u u u s u s u u u ds

u t v t

a t s v s v v v s v s v v v ds

a t s u s u u u s u s u u u ds

a t s v s v v v s v s v v v ds

w

α β

α β

α β

α β

+

− ≤

− +

≤ +

+ +

≤









( ) (4.6)t

 

for all 0t I R+∈ ∪ . Now lim ( ) 0
t

w t
→∞

= , then a real number 0T >  such that ( )
2

w t
ε

<  for 

all t T≥ . Hence, ( ) ( )u t v t ε− ≤  for all t T≥ , so all the solutions of the problem (1.1) 

are uniformly globally attractive on 
0I R+∪ . 
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