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1.Description of the Problems 

Let �  denote the real line. Let [ ]0
,0I r= −  and [ ]0,I a=  be two closed and bounded 

intervals in �  for some real numbers r and a with 0r >  and 0a > . Let )( 0
,I=� � �  

denote the space of all continuous real valued functions on 0I  equipped with the .
c
 

defined by 

( )
0

sup
t I

u u t
∈

=
�

 

Given a measurable space )( , AΩ and a given a history function )( 0
: ,Iφ Ω → � � , 

We discuss the following perturbed functional random differential equation (FRDE) 

)( ( ) )( ( ) )( ( ) )(

)( )(
0

0

' , , , , , , , . .

, , ,

t t tu t p t u q t u r t u a e t I

u t t t I

ω ω ω ω ω ω ω

ω φ ω

= + + ∈

= ∈
                     {1.1} 

for all ω ∈Ω  where , , :p q r I C× × Ω  
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Here, we shall use a random version of the Leray-Schauder type principle proved in 

Dhage [3] and study the nonlinear initial value problems of perturbed functional 

random differential equation of first order of the solution under suitable conditions. 

2.Auxiliary results 

let ( ),Ω Α  denote a measurable space, U  a separable Banach space. Let 
Uβ be a 

sigma algebra of all Borel subsets of U. A mapping :u UΩ →  is called measurable if 

for any UB β∈ . 

( ) ( ){ }1 /u B u Bω ω− = ∈Ω ∈ ∈ Α  

 

We recall that a multi valued mapping : 2 \
u

F φΩ →  is called measurable if for any in 

UB β∈ . 

( ) ( ){ }1 /F B F Bω ω φ− = ∈Ω ∩ = ∈ Α/  

A measurable mapping : Uψ Ω →  is called a measurable selector of the multi-valued 

napping : 2 \
u

F φΩ →  if ( ) ( )Fψ ω ω∈  forω ∈Ω . 

Let :T U U→ , T is called a contraction if there exists a constant 1α < such that 

u
T T u vα− ≤ − for all ,u v U∈ , T is called compact if ( )T U

uuuuuv

 is the compact subset of 

U where ( )T U
uuuuuv

 is the closure of ( )T U inU. T is called totally bounded if for any 

bounded subset S of U, ( )T S  is a totally bounded set in U. 

A random operator :T U UΩ× → is called contraction (resp. compact. totally 

bounded and completely continuous) if ( )T ω  is contraction (resp. compact, totally 

bounded and completely continuous) for each ω ∈Ω . 

We need the following  fixed point theorem of Dhage [ ]4 . 

Theorem 2.1. Let , , :A B C U UΩ× → be two random operators satisfying for each 

ω ∈Ω  
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(a). ( )A ω , ( )B ω ,are contractions. 

(b). ( )C ω  is completely continuous and 

(c).  the set ( ) ( ) ( ){ }/U A u B u C u uε ω ω ω ω α= ∈Ω → + + =  is bounded 

for all      1α >  

Then the random equation 

( ) ( ) ( )A u B u C u uω ω ω+ + =  

  has a random solution. 

Next we prove a random version of the following fixed point theorem of Dhage [ ]3  

Theorem2.2. Let , , :A B C U U→ be operators such that: 

(a) A ,B are linear and bounded and there exists a p ∈� such that pA is a   

 nonlinear contraction, and 

(b) C is completely continuous. 

Then either 

(i) the operator equation Au Bu Cu uλ+ + = has a solution for  1λ = or 

(ii) the set { }/ ,0 1u U Au Bu Cu uε λ λ= ∈ + + = < < is unbounded. 

Theorem2.3. Let , , :A B C U UΩ × → be random operators satisfying for each ω ∈Ω  

(a) ( )A ω , ( )B ω  are linear and bounded, and there exists a p ∈� such that 

 pA is a nonlinear contraction, and 

(b) ( )C ω is completely continuous and 

(c) the set ( ) ( ) ( ) ( ){ }/u U A u A u C u uε ω ω λ ω ω= ∈ + + =  is bounded for 

every measurable 

function :λ Ω → �  with ( )0 1λ ω< < . 

Then the operator equation 

( ) ( ) ( )A u B u C u uω ω ω+ + =  

has a random solution. 

As a consequence of Theorem 2.2 we obtain 

TANZ(ISSN NO: 1869-7720)VOL20 ISSUE6 2025

PAGE NO: 222



 

 

Corollary 2.4  Let , , :A B C U UΩ × →  be two random operators satisfying for each

ω ∈Ω  

    (a) ( )A ω  , ( )B ω are contractions. 

(b) ( )C ω  is completely continuous. 

(c).the set ( ) ( ) ( ) ( ){ }|u U A u B u C u uε ω ω λ ω ω= ∈ + + = is bounded for 

each  ( )0,1λ ∈  

then the random equation ( )1.1 has a random solution. 

3. Existence Theory 

Let ( ) ( ) ( ) ( ) ( ), , , , , , , , ,M J B J BM J AC J C J� � � � �  denote respectively the spaces of 

all measurable, bounded, bounded and measurable, absolutely continuous and 

continuous real valued functions on J .Define a norm .
C

in ( ),C J � by 

( )max
C t J

u u t
∈

=  

Clearly ( ),C J � is a separable Banach space with this supremum norm. We need the 

following definitions. 

Definition 3.1. A function : J Cβ × × Ω → �  is said to be ω -Caratheodory if for each 

ω ∈Ω  

(i) . ( ), ,t p t u ω→  is measurable for allu C∈ , and 

(ii) ( ), ,u p t u ω→  is continuous for almost everywhere t J∈  

Further a ω -Caratheodory function β is called 1
Lω -Caratheodory if 

(iii) for each real number 0k > there exists a function ( )1: ,
k

h L JωΩ → �  

such that 

( ) ( ), , , , . .
k

t u h t a e t Jβ ω ω≤ ∈  

For allu C∈ with ( )
C

u kω ≤  
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We consider the following set of hypotheses. 

(A). The function ( ), ,p t uω ω→ , ( ), ,q t uω ω→ are measurable for all 

 t I∈ and u C∈  

(B). The function ( ), ,t p t u ω→ , ( ), ,q p t u ω→ are continuous for each 

ω ∈Ω , and there exists  a function ( )1
: ,L Jα Ω → � , with ( ) 1

1
L

α ω <

, such that for each ω ∈Ω  

   ( ) ( ) ( ) ( ) ( ), , , , , . .
C

p t u p t v t u v ae t Iω ω α ω ω ω− ≤ − ∈ , 

                                          ( ) ( ) ( ) ( ) ( ), , , , , . .
C

q t u q t v t u v ae t Iω ω α ω ω ω− ≤ − ∈  

    for all ,u v C∈ . 

(C) .The function ( ), ,r t uω ω→ is measurable for all t I∈ and u C∈  

(D).The function g is 1
Lω - Caratheodory. 

(E).There exists a function ( )1
: ,L Jγ Ω → � with ( ), 0tγ ω > a.e. t J∈  

 and a  continuous nondecreasing function ( ] ( ): 0, 0,ψ ∞ → ∞ such 

 that 

                   ( ) ( ) ( )( ), , , . .
C

r t u t u a e t Iω γ ω ψ ω≤ ∈  

              for all u ∈� . 

Theorem 3.1. Assume that hypothesis (A) -(E) hold. Further suppose that 

( ) 1
1

L
α ω <  and 

( )
� ( )

1
0

dw

w w
L

χ ω
χ

∞

>
+                                                      ( )3.1  

Where 

( ) ( ) ( )0

0

, 0,

t

c r s dsω φ ω ω= + �
 and � ( ) ( ) ( ){ }, max , , ,s s sχ ω α ω χ ω=  

Then the perturbed FRDE ( )1.1 has a solution on J . 
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Proof. Let ( ),U J R= � , Now FRDE ( )1.1 is equivalent to the random integral equation 

(RIE) 

( ) ( ) ( )( ) ( )( ) ( )( )
0 0 0

, 0, , , , , , , ,

t t t

s ss
u t p t u ds q t u ds r t u dsω φ ω ω ω ω ω ω ω= + + +                      

        

 . .a e t I∈                                                                 (3.2) 

= ( ),tφ ω , 0t I∈  

Define three operators , , :A B C J C U× × Ω →  by 

( ) ( ) ( )( )
0

, , ,

t

s
A u t p t u dsω ω ω ω=   . .a e t I∈ , 

= 0               0t I∈  

 

and 

( ) ( ) ( )( )
0

, , , ,

t

sB u t q t u dsω ω ω ω=   . .a e t I∈ , 

= 0   0t I∈  

 

( ) ( ) ( )( )

( )
0

, , ,

,

t

sC u t r t u ds

t

ω ω ω ω

φ ω

=

=

  

Then the problem of finding the random solution of the perturbed FRDE ( )1.1 is just 

reduced to finding the random solution of random equation

( ) ( ) ( ) ( ) ( ) ( ) ( ), , , ,A u t B u t C u t u tω ω ω ω ω ω ω+ + = t I∈ in U. This further implies that 

the random fixed points of the operator equation 

( ) ( ) ( ) ( ) ( ) ( ) ( ), , , ,A u t B u t C u t u tω ω ω ω ω ω ω+ + =  are the random solution of the 

FRDE ( )1.1 on J . We shall show that the operators ( ) ( ) ( ),A B and Cω ω ω satisfying 

all the condition of Theorem 2.1. 

Step I: First we show that ( )A ω , ( )B ω and ( )C ω are random operators onU . Since 
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( )( ), ,

t
q t uω ω ωa

 

Is measurable for each t I∈ andu ∈� ,and the integral on the right hand side of the 

equation ( )3.2 is  the limit of the finite sum of measurable function, the function 

( )( )
0

, ,
t

sr t u dsω ω ωa  

and 

 

Is measurable. Hence the operator ( )A ω is  a random operator onU . 

Again the function ( ),tω φ ω→ is measurable for each 0t I∈ and the integral 

( )( )
0

, ,
t

sr t u dsω ω ωa  

Is measurable, therefore and the sum ( ) ( )( )
0

0, , ,
t

sr t u dsφ ω ω ω+  is measurable in 

ω ∈Ω for each t I∈ .Hence the operator ( )C ω is  a random operator onU . 

Step II: Next we show that ( )A ω is a contraction random operator onU . Let ,u v U∈ . 

Then by(H2) 

( ) ( ) ( ) ( ) ( )( ) ( )( )
0 0

, , , ,
t t

t tA u t A v t p s u ds p t v dsω ω ω ω ω ω− = −   

( ) ( ) ( ), t tt u vα ω ω ω≤ −
�

 

( ) ( ) ( )1L
u vα ω ω ω≤ −

�
 

Taking supremum over t, we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( )1L
A u t A v t u vω ω α ω ω ω− ≤ −

�
 

 

for all ,u v U∈ and ω ∈Ω where ( ) 1
1

L
α ω < . This shows that ( )A ω is a contraction 

random operator on U . 

TANZ(ISSN NO: 1869-7720)VOL20 ISSUE6 2025

PAGE NO: 226



 

 

Similarly,we can show that ( )B ω is a contraction random operator onU . Let ,u v U∈ . 

Then by(B) 

( ) ( ) ( ) ( ) ( )( ) ( )( )
0 0

, , , ,
t t

t tB u t B v t q s u ds q t v dsω ω ω ω ω ω− = −   

( ) ( ) ( ), t tt u vβ ω ω ω≤ −
�

 

( ) ( ) ( )1L
u vβ ω ω ω≤ −

�
 

Taking supremum over t, we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( )1L
B u t B v t u vω ω β ω ω ω− ≤ −

�
 

for all ,u v U∈ and ω ∈Ω where ( ) 1
1

L
β ω < . This shows that ( )B ω is a 

contraction random operator on U . 

Step III: Now we shall show that the random operator ( )C ω is completely continuous 

on U . First we show that ( )C ω is continuous on U  .Using the dominated 

convergence theorem and the continuity of the function ( ), ,r t u ω in u ,it fallows that 

( ) ( ) ( ) ( )( )
0

, , , , ,

t

n nC u t r s u s dsω ω φ θ ω θ ω ω= + +  

( ) ( )( )
0

, , , ,

t

r s u s dsφ θ ω θ ω ω= + +  

( ) ( ),C u tω ω=  

for all .t I∈  

Similarliy, 

( ) ( ) ( ) ( ) ( ), , ,nC u t t C u tω ω φ ω ω ω= = forall t Iθ∈  

This shows that the ( )C ω  is continuous random operator on U . 
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Next we show that ( )C ω is totally bounded random operator on U  .To finish, it is 

enough to prove that ( ){ }:
n

C u n Nω ∈ is uniformly bounded and equicontinuous set in 

U . Suppose that ( ),
n

u t ω is a bounded sequence in U . Then there is a real number 

0s > such that ( ), ,
n

u t s n Nω ≤ ∀ ∈ . 

( ) ( ) ( ) ( ){ } ( )( )
0

, max , , , , , ,

t

n n
C u t t r s u s w dsω ω φ θ ω φ ω θ ω≤ + +  

( ) ( )

( ) ( )

( ) ( ) 1

0

0

,

,

t

s

a

s

s L

h s

h s

h

φ ω ω

φ ω ω

φ ω ω

≤ +

≤ +

≤ +





�

�

�

 

Taking supremum over t, we obtain 

( ) ( ) ( ) 1n s L
C u hω φ ω ω≤ +

�
 

Which shows that ( ){ }:
n

C u n Nω ∈ is uniformly bounded set in U . 

Next we show that the set ( ){ }:
n

C u n Nω ∈ is an equicontinuous set. Let t, Iτ ∈  

Then 

( ) ( ) ( ) ( )C u t C uω ω τ− <  ( )( ) ( )( )
0

, , , ,

t

n n

u

r s u ds r s x ds

τ

ω ω ω ω−   

( )( ), ,

t

nr s u ds
τ

ω ω≤   

( , )

t

sh s ds
τ

ω≤   

( )( , ) ,a t aω τ ω≤ −  
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Where ( , ) ( , )

t

s

u

a t h s dsω ω=   

Since p is continuous on I, it is uniformly continuous on I. Therefore 

( ) ( ) ( ) ( ) 0C u t C uω ω τ− →  as t τ→  

Again let ,t Iθτ ∈  Then we have
 

( ) ( ) ( ) ( ) ( ) ( ), , 0C u t C u tω ω τ φ ω φ τ ω− = − →  as t τ→  

Similarly if t I∈ and 0Iτ ∈ then we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
0

, 0, , ,

t

nC u t C u r s u dsω ω τ φ τ ω φ ω ω ω− = − −   

( ) ( ) ( )( )
0

, 0, , ,

t

nt r s u dsφ ω φ ω ω ω≤ − +   

( ) ( ) ( )( )
0

, 0, , ,

t

n
t r s u dsφ ω φ ω ω ω≤ − +   

( ) ( )
0

, 0, ( , )

t

s
t h s dsφ ω φ ω ω≤ − +   

Now if 0,t τ− → thus we have 0t → as 0τ → ,so by continuity of φ and the integral, it 

follows that 

( ) ( ) ( ) ( ) 0C u t C uω ω τ− →  as t τ→  

Hence the set ( ){ }:
n

C u n Nω ∈  is an equicontinuous in U. Thus the random operator

( )C ω is completely continuous in view of Arezela-Ascoli Theorem. 

Finally we show that the hypothesis ( )c  of Theorem 2.1 holds. 

Let l ∈� be arbitrary. Then we have           

 ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , 1A l t B l t C l t l tω ω ω ω ω ω λ ω λ+ + = >  for 
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all .t J∈ Therefore 

( ) ( ) ( ) ( ) ( ) ( ) ( )1,l t A l t B l t C l tω λ ω ω ω−= + +    

for  .t J∈ Hence 

( , )l t ω =  

( ) ( )( ) ( )( ) ( )( )

( )

1

0 0 0

0

0, , , , , , , ,

, ,

t t t

s s s
p t l ds q t l ds r t l ds t I

t t I

ϕ ω ω ω ω ω ω ω
λ

ϕ ω

−


+ + + ∈

= 
 ∈

    

Hence if t I∈ , 

( ) ( ){ } ( ) ( )

( )

1 1 1

0 0

1

0

( , ) max 0, , , , ( ), , ( ),

, ( ),

t t

s s

t

s

l t t p s l ds q s l ds

r s l ds

ω λ φ ω φ ω λ ω ω λ ω ω

λ ω ω

− − −

−

≤ + +

+

 



 

( ) ( ) ( ) ( )
0 0 0

, ( ), , ( ), , ( ),

t t t

s s sC
p s l ds q s l ds r s l dsφ ω ω ω ω ω ω ω≤ + + +    

( ) ( ) ( ) ( ) ( ) ( )
0 0 0

, ( ), ,0, ,0, , ( )

t t t

s s
p s l p s ds p s t l dsφ ω ω ω ω ω γ ω ϕ ω≤ + − + +   ��

 

( ) ( ) ( ) ( ) ( )
0 0 0

, ( ) ) ,0, , ( )

t t t

s ss l ds p s ds t l dsφ ω α ω ω ω γ ω ϕ ω≤ + + +  � ��
 

( ) ( ) ( )0

0

ˆ , ( ) ( )

t

s sc s l lω γ ω ω ϕ ω ≤ + +  � �
ds 

Set ( ) [ ],
, max ( , )

s r t
l t l sω ω

∈ −
= Then ( )( , ) , ,u t w t t Jω ω≤ ∀ ∈ andω ∈ Ω , and 

there is a [ ],t r t∗ ∈ −  such that 

( ) [ ],
, ( , ) max ( , )

s r t
w t l t l sω ω ω∗

∈ −
= =  

for all ω ∈ Ω .Therefore for any t I∈ we get 
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( ) ( ) ( ) ( )0

0

ˆ, , ( ) ( )

t

s s
l t c s l l dsω ω γ ω ω ϕ ω= + + � �

 

( ) ( ) ( )( )0

0

ˆ , ( , ) , .

t

c s w s w s dsω γ ω ω ϕ ω ≤ + +   

Let 

( ) ( ) ( )( )0

0

ˆ( , ) , ( , ) , ,

t

m t s c s w s w s ds t Iω γ ω ω ϕ ω = + + ∈   

Then we have ( ) ( ), , ,w t m t t Iω ω≤ ∀ ∈ and ω ∈ Ω and ( )0(0, ) .m cω ω= Differentiating 

w.r.t.t yields 

( ) ( ) ( )( )ˆ, , ( , ) ,m t t w t w tω γ ω ω ϕ ω ′ = +   

( ) ( )( )ˆ , ( , ) , ,t m t m t t Iγ ω ω ϕ ω ≤ + ∈   

Hence from above inequality we obtain 

( )
( )( )

( )
,

ˆ , ,
( , ) ,

m t
t t I

m t m t

ω
γ ω

ω ϕ ω

′
≤ ∈

+
. 

Integrating from 0 to t gives 

( )
( )( )

( )
0 0

,
ˆ ,

( , ) ,

t tm t
ds t ds

m t m t

ω
γ ω

ω ϕ ω

′
≤

+   

By change of the variable, we obtain 

( )

( ) ( )
( )0 0

( , )

0 0

ˆ ˆ, ,
( ) ( )

m s t a

c c

dw dw
s ds s ds

w w w w

ω

ω ω

γ ω γ ω
ϕ ϕ

∞

≤ ≤ <
+ +     

This implies that there exists a constant ( ) 0M ω > such that 

( , ) ( ),m t M t Jω ω< ∀ ∈ andω ∈ Ω  

Then we have 
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( , ) ( , ) ( , ) ( ),u t w t u t M t Jω ω ω ω≤ ≤ ≤ ∀ ∈  andω ∈ Ω  

Then the set � is bounded. Hence an application of Theorem 2.1 yields that the 

perturbed FRDE (1.1) has a solution on J. 
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