
Creating Safety Performance Functions for Two-Way Stop-Controlled 

Intersections in City, Delhi 

 

Loknath Kumar
1
, Sanjeev Sinha

2
 

1 
Department of Civil Engineering, National Institute of Technology Patna, Patna – 800005; 

2 
Department of Civil Engineering, National Institute of Technology Patna, Patna – 800005; 

Email: loknathk.phd18.ce@nitp.ac.in, sanjeev@nitp.ac.in 

 

 

Abstract- 

The first edition of the Highway Safety Manual (HSM) features a basic crash prediction model for two-way stop-

controlled intersections (TWSC) on rural two-lane highways. This model considers the AADT on both major and 

minor roads, assuming base conditions of no intersection skewness, no turning lanes, and no lighting. A crash 

modification factor (CMF) is applied if the intersection conditions differ from the base conditions. However, the 

HSM model does not account for curvature. It is well known that curved TWSC intersections are less safe than non-

curved ones, especially on rural two-lane roadways. This paper presents the development of crash prediction models 

that incorporate intersection geometrics for TWSC intersections on rural two-lane highways in Louisiana. It then 

compares the results from the developed model with the calibrated HSM model. Using the negative binomial model, 

5127 TWSC intersections, including both three- and four-leg intersections from all Delhi cities, were verified 

individually. The estimation results indicate that AADT, curve radius, and intersection skewness angle significantly 

impact the expected crash frequency for both three- and four-leg intersections. This research employs cumulative 

residual plots; mean absolute error, and root mean square error for a comparative analysis of HSM models, HSM 

models with calibration. The results show that Louisiana-specific SPFs outperform the calibrated SPFs with superior 

reliability. Calibration factors of 0.56 for three-leg intersections and 0.42 for four-leg intersections are estimated, 

suggesting that the original HSM model over predicts crashes in Delhi. 
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1.0 Introduction- 

Horizontal curves and intersections present challenges to drivers and other roadway users due to their unique design 

and function. Consequently, both have been separately identified as key areas for safety improvement in many 

states' highway safety strategies. On horizontal curves, vehicles are more likely to leave the travel lane when the 

roadway alignment changes direction, especially on curves with small radii. In 2016, approximately 25% of 

roadway fatalities in the United States occurred along horizontal curves, according to the Fatality Analysis 

Reporting System. The average crash rate for horizontal curves is about three times higher than for tangent segments 

[2]. Additionally, about 76% of fatal crashes on horizontal curves involve single vehicles leaving the roadway and 

striking trees, utility poles, rocks, or other fixed objects, or overturning [3]. Intersections are locations where two or 

more roads join or cross. The crossing and turning maneuvers at intersections create conflicts between vehicles and 

between vehicles and pedestrians or bicycles, which can result in traffic crashes. Therefore, intersections are 

common points for concentrations of traffic crashes [4] 

Rural roadway safety remains a crucial concern in the United States. In 2023, 20,687 traffic fatalities occurred in 

rural areas, accounting for 55% of all traffic fatalities, with 28% involving un-signalized intersections [1]. Over 80% 

of T-intersection-related fatalities in rural areas occur at un-signalized intersections in Fig.1 [2]. Stop-controlled 

intersections present a potential safety risk not found at signalized intersections, with the probability of a fatality per 

100 crashes at rural stop-controlled intersections being over 12 times higher than at urban signalized intersections 

[3]. On two-lane highways, crashes often result from speed differentials between vehicles stopping or slowing down 

to turn left or right and vehicles traveling in the same lane, or from drivers on minor roads failing to yield at these 

intersections [4]. Due to these combined challenges, having an intersection on a horizontal curve may increase the 

probability of a crash. 

 

Fig. 1. An example of a crash occurred at a T-intersection on a horizontal curve. 

Intersection safety has been a long-standing problem in Louisiana. Intersection-related fatalities and severe injuries 

accounted for 25.1% of total fatalities and 41.9% of total severe injuries in the state. Over 58% of intersection-

related fatalities occurred at un-signalized intersections [6]. Many such intersections were created decades after the 

major roadway existed to provide access to minor streets. Our investigation found that many intersections on 

horizontal curves are maintained by state and local agencies in Delhi. A typical example of a crash at an intersection 

on a horizontal curve is shown in Fig. 2. This T-intersection is located on a rural two-lane highway with a stop sign 

on the minor roads. The crash involved a right-turning vehicle and a vehicle that ran off the road while attempting to 

negotiate the curve. 
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Fig. 2. An example of a crash occurred at an intersection on a horizontal curve. 

To better understand the factors affecting crash frequency and injuries, safety performance functions (SPFs) 

presented in the Highway Safety Manual (HSM) are valuable tools for relating the number of different types of 

crashes or severities to site attributes. These models consistently include traffic data (Average Annual Daily Traffic 

or AADT) and incorporate site features in the form of Crash Modification Factors (CMFs), such as lighting 

conditions and the presence of turning lanes at intersections. The HSM recommends that state agencies update these 

functions through a calibration process with local data due to substantial variations among jurisdictions [7]. 

While the HSM provides detailed information on the local calibration of its models, it is important to note that the 

HSM's SPFs were developed based on data collected from selected state roadways and may not apply universally. 

Consequently, many states have developed SPFs based on local data, revealing significant state-to-state variation in 

the accuracy of the HSM's SPFs. However, existing SPFs and CMFs in the HSM assume that the relationship 

between intersection safety and traffic flow is the same for curved and tangent intersections, even though previous 

research suggests this may not be true. These models do not specifically investigate and consider intersections on 

horizontal curves. Furthermore, the rural two-lane models were developed over 20 years ago [8]. 

To meet Louisiana's Strategic Highway Safety Plan's goal of reducing roadway departure, intersection-related, and 

non-motorized user deaths and severe injuries by 60% by 2030, there is a need to further examine intersection safety 

performance on rural two-lane highways with specific geometric characteristics. 

1.2 Research Objectives 

 
Based on the issues noted above, the following research objectives were developed: 

 

1. Identify crash characteristics for intersection on horizontal curves; 

2. Identify risk factors or roadway characteristics associated with intersections on horizontal curves; 

3. Develop Louisiana-specific SPFs for TWSC intersections; 

4. Provide a list of possible countermeasures that target the identified risk factors. 

 

1.3 Systemic Approaches in Safety Performance Functions Development 

The systemic approach to safety is a data-driven, network-wide process that employs analytical techniques to 

identify potential safety improvements and suggest projects for safety investment that might not be discovered 

through traditional site analysis methods. This approach can pinpoint and address high-risk roadway features 
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associated with specific or severe crash types. Its goal is to complement traditional site analysis with a more 

comprehensive and proactive strategy for preventing the most severe crashes on our nation’s roadways. DMADV is 

one of the Six Sigma frameworks, focusing on the development of new services, products, or processes rather than 

improving existing ones. The DMADV approach—Define, Measure, Analyze, Design, Verify—is particularly 

effective for implementing new strategies and initiatives due to its reliance on data, early identification of success 

factors, and thorough analysis. Figure 1.2 illustrates the five steps involved in this approach. 

 

Figure 3: Five Steps in DMADV 

2.0  Literature review 

Previously, many studies conducted safety performance analysis at rural intersections. SPFs are regression models, 

as defined by HSM [7], to estimate the expected annual average number of crashes of individual highway sections or 

intersections. AASHTO published a safety analysis software program—Safety Analyst. The Federal Highway 

Administration collaborated closely with 27 state highway agencies and local organizations to develop Safety 

Analyst and support the application of methodological approaches in HSM. Safety Analyst “incorporates state-of-

the-art safety management approaches into computerized analytical tools for supporting the decision-making process 

to identify safety improvement needs and develop a system wide program of site-specific improvement projects” [9–

11]. Safety Analyst utilizes a series of default SPFs established with data available for four states: California, 

Minnesota, Ohio, and Washington. Considering different road characteristics across various jurisdictions, it is 

suggested to develop separate SPFs based on each state's traffic and crash data [12]. Several states have developed 

their state-specific intersection SPFs to address issues associated with HSM model calibration, including Illinois, 

Oregon, Virginia, Pennsylvania, and Michigan [13–17]. 

For example, Tegge, Jo, and Ouyang [13] developed Illinois-specific SPFs based on NB regression with five-year 

crash data (2001–2005). The following rural intersection facility types were included: (1) rural minor leg stop-

control, (2) rural all-way stop-control, (3) rural signalized intersections, and (4) rural undetermined. Each SPF was 

developed for different crash severity levels, including fatal, injury, and fatal injury.  

Monsere et al. [14] presented two SPFs for Oregon intersections: rural three-leg minor stop-control intersections and 

urban four-leg signalized intersections. The SPFs developed in this research were compared to the HSM base 

models calibrated to Oregon data. Data from 115 rural three-leg stop-controlled intersections were collected between 

2005 and 2007. 

Garber and Rivera [15] developed Virginia-specific SPFs based on NB regression for both rural and urban sites 

separately, including three-leg signalized intersections, three-leg minor stop intersections, four-leg signalized 

intersections, and four-leg minor stop intersections. To account for the different topography in Virginia, SPFs were 
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also developed for three different regions. Crash data for the years from 2003 through 2007 were collected for this 

study. The development of rural intersection SPFs in Pennsylvania has revealed the importance of roadway 

geometric characteristics for rural intersections.  

Donnell et al. [16] developed SPF models for TWSC three-leg and four-leg rural intersections, all-way stop-control 

intersections, and signal-control intersections. NB models were used to develop the SPFs. The SPFs featured 

variables such as major and minor AADTs, shoulder width on the major and minor roads, paved width on major 

roads, and posted speed limits, among others. The study showed that calibrated SPFs based on the HSM predictive 

method have considerably different state precisions. 

Gates et al. [17] developed SPFs for rural road segments and intersections in Michigan. The facility types included 

two-lane and four-lane state trunklines (divided and undivided), rural county roadways, signalized intersections, and 

minor-road stop-controlled intersections, with data from 2011 to 2015. NB regression was used in this study. In 

addition to AADT, detailed models were developed, which also considered factors such as shoulder width, driveway 

density, horizontal curvature, median presence, road surface type, and intersection skew. 

3.0 Methodology and Data Collection: 

A significant effort was made to create a comprehensive TWSC intersections database. Crash data, AADT, and 

other relevant roadway attributes were retrieved and merged from various sources for TWSC intersections on rural 

two-lane roadways across all parishes (counties) in Louisiana. Three major data sources from the Department of 

Transportation and Development (DOTD)—the DOTD State Highway Assets Geo database, DOTD roadway 

inventory file, and DOTD crash database—were utilized for the years 2013 to 2023. SPF development requires 

intersection and roadway attributes such as horizontal curve radius, lane widths, number of intersection legs, and 

speed limits. These attributes were retrieved from shape files provided by the DOTD State Highway Assets Geo 

database in Arc GIS format. Traffic volume data, specifically AADT, was collected from the DOTD roadway 

inventory file, which included verified log mile and route numbers for each rural intersection. Additionally, to 

enhance data accuracy, Google Maps street-level imagery was used to verify turning radii and traffic control types 

for each intersection. As illustrated in Fig. 4, several important steps were involved in retrieving and merging 

different data files from DOTD for the TWSC intersection database development for SPF modeling. These steps are 

summarized as follows: 

Step 1: Set up a curve file with a radius less than 900 feet, based on previous studies and engineering judgment. For 

this study, curves with radii greater than 1500 feet have negligible differences compared to tangent sections, so they 

are excluded. This is done using the file labeled CURVE. 

Step 2: Create a new intersection file by retrieving intersections that are not controlled by signals from the file 

INTERSECTION. 

Step 3: Merge the files from Steps 1 and 2 to identify intersections on curves. 

Step 4: Verify and correct the merged file from Step 3 using Google Maps for each intersection in each parish. 

Remove the following: 

 I. Curves or intersections with turning lanes. 

 II. Roundabouts and service roads. 

 III. Signalized intersections. 
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Step 5: Add crash data to the file developed in Step 4. According to DOTD, an intersection crash is defined as a 

crash occurring within a 152-foot radius of an intersection. 

Step 6: Merge all relevant information into a single data file. 

The research team also manually collected intersection attributes, such as intersection skewness, which were not 

included in the datasets mentioned above. Intersection skew angles were measured using the ruler tool in Google 

Earth. The HSM defines intersection skew angle as the absolute deviation from a 90-degree intersection angle, with 

skew ranging from zero (for perpendicular intersections) to a maximum of 90 degrees. For this study, skew was 

measured as the smallest angle between any two legs of the intersection. Given the large number of TWSC 

intersections (1126 in total), a binary parameter for intersection skewness was defined (0 if skewness is less than 30 

degrees, 1 if skewness is greater than 30 degrees) to enhance manual collection efficiency and accuracy for SPF 

development. 

 

 

 

 

 

 

 

 

Fig. 4. Flowchart of TWSC intersection database development. 

Table 1 Overview of TWSC intersections on rural two-lane highways. 

  Three-Leg TWSC Four-Leg TWSC 

Variable Level or Unit Mean SD Min Max Mean SD Min Max 

Major road 

AADT 
Vehicles/Day 2200 2215 45 16600 2562 2156 95 14860 

Major road 

AADT 
Vehicles/Day 350 664 12 9890 582 862 9 7820 

Curve radius Ft 881.2 382 89.5 1550 850.6 385.03 82.5 1560 

Intersection 

skewness 

0 if skewness <30 

degree, 1 if 

skewness >30 

degree 

0.015 0.120 0 1 0.006 0.084 0 2 

Number of total 

crashes 

annual count per 

intersection 
0.170 0.385 0 5 0.352 0.752 0 9 

Number of fatal 

and injury 

annual count per 

intersection 
0.072 0.185 0 2 0.156 0.356 0 5 

Crash Data 

(DOTD) 

Identified 

Intersections 

Intersection 

Dataset 

Google Map 

Verification 

Un-signalized 

Intersections 

Google Map 

Verification 
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crashes 

Number of 

PDO crashes 

annual count per 

intersection 
0.095 0.310 0 3 0.232 0.485 0 6 

 

3.1 Calibration 

It looks like you're discussing the process for calibrating Safety Performance Functions (SPFs) and Crash 

Modification Factors (CMFs) in transportation engineering. This involves adjusting models to account for 

differences between the conditions for which they were originally developed and the actual conditions where they're 

being applied. 

Here's a breakdown of the calibration process based on the steps you provided: 

1. Randomly Select Intersections: Choose a representative sample of intersections for analysis to avoid bias. 

2. Collect Site-Specific Data: Gather detailed geometric design data for each intersection, which could 

include factors such as road type, lane configurations, and other relevant characteristics. 

3. Apply Base Model and CMFs: Use the Highway Safety Manual (HSM) base model along with applicable 

CMFs to predict the number of crashes for each selected intersection. 

4. Compare Predictions to Observations: Analyze the predicted number of crashes against the actual 

observed crash data to identify discrepancies. 

5. Calculate Calibration Factor: Determine a calibration factor that adjusts the SPF or CMF to better fit the 

observed data. This factor can then be used to improve the model's accuracy for the region in question. 

By following these steps, transportation engineers can ensure that SPFs and CMFs provide more reliable estimates 

of crash frequency under specific conditions. The model can also be adapted for future predictions by incorporating 

trends and changes in traffic patterns. 

N = No *C*C*MF      -                                               (1) 

Where, N = predicted annual average number of crashes, N0 = predicted annual average number of crashes at base 

conditions, C = calibration factor for local condition adjustment, and CMF = the product of the set of applicable 

CMFs. 

No- 3ST = exp [- 9.86+0.79×ln (AADTmaj) +0.49×ln (AADTmin)]                                -            (2)  

No- 4ST = exp [-8.56+0.60×ln (AADTmaj) +0.61×ln (AADTmin)]                                 -            (3)  

Where, AADTmaj = AADT for the major road, AADTmin = AADT for the minor road. 

The process of calculating a calibration factor in the Highway Safety Manual (HSM) involves a detailed comparison 

between predicted and observed crash data. Here’s how the calibration factor is determined: 

1. Selection of Intersections: Identify and randomly select 30 to 50 intersections that accurately represent the 

region's physical and safety conditions. 

2. Minimum Sample Size Criteria: Ensure the selected locations collectively include at least 100 crashes to 

meet the minimum sample size requirement. 

3. Calculation of the Calibration Factor: Use the following equation to determine the calibration factor: 

TANZ(ISSN NO: 1869-7720)VOL20 ISSUE 6 2025

PAGE NO: 15



                                 Calibration Factor= 
                      

                       
                                         - (4) 

This calibration factor adjusts the predictive model to better match the specific conditions of the region being 

studied. Here’s a step-by-step outline of the process: 

 Collect Data: Gather crash data and site-specific geometric design data for each selected intersection. 

 Apply Base Model and CMFs: Use the HSM base model and relevant Crash Modification Factors (CMFs) 

to estimate the number of crashes for each intersection. 

 Compare Predicted and Observed Crashes: Compare the predicted number of crashes with the actual 

observed crash data. 

 Calculate Calibration Factor: Calculate the calibration factor using the total observed and predicted crash 

counts. 

The calibrated model can then be used to provide more accurate predictions of crash frequency for the region under 

study. This ensures that the SPFs and CMFs account for regional-specific conditions and variations. 

3.2 Development of SPFs: 

Considering the complexity of random, discrete, and non-negative crash data, it has been studied that the Poisson 

distribution performs well and has been commonly used to model count data such as crash frequency 

The Negative Binomial regression model is a generalization of the Poisson regression model that includes an extra 

parameter to account for the overdispersion. Here’s a breakdown of the process: 

1. Poisson Regression Model: Initially, the Poisson regression model is used, assuming that the mean and 

variance of the crash data are equal. The model is suitable for count data and is expressed as: 

λi =                                     - (5) 

where λi is the expected crash frequency, β0 is the intercept, β1,β2,…,βk are the coefficients, and 

xi1,xi2,…,xik  are the explanatory variables. 

2. Over dispersion Issue: If the variance of the crash data exceeds the mean, overdispersion is present, 

indicating that the Poisson model may not be appropriate. 

3. Negative Binomial Regression Model: To address over dispersion, the Negative Binomial regression 

model introduces an extra parameter, α\alphaα, to account for the over dispersion. 

4. Model Selection: After fitting both models, the suitability of the Poisson vs. Negative Binomial model is 

evaluated based on goodness-of-fit measures such as the Akaike Information Criterion (AIC) or Bayesian 

Information Criterion (BIC). The model with the lower AIC or BIC is preferred, indicating a better fit for 

the data. 

By accounting for over dispersion with the Negative Binomial regression model, transportation engineers can 

achieve more accurate and reliable predictions of crash frequency, leading to better-informed decisions in traffic 

safety and management. 
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Table 2 Summary of calibration factors. 

 

State 
Calibration Factor 

Three-Leg TWSC Intersections Four-Leg TWSC Intersections 

Delhi 0.60 0.46 

Mumbai 0.35 0.45 

Kolkata 0.80 0.85 

Bangalore 0.65 0.72 

Patna 0.20 0.25 

Pune 0.77 0.54 

3.3 Model evaluation 

Evaluating the performance of Safety Performance Functions (SPFs) is crucial to ensure their accuracy and 

reliability. Several goodness-of-fit measures are commonly used in this process. Here’s an overview of these 

measures and the research methodology involving data partitioning for model development and validation: 

Goodness-of-Fit Measures 

1. Over dispersion Parameter: 

o This parameter helps identify the extent of overdispersion in the data. In the context of the 

Negative Binomial model, it indicates how much the variance exceeds the mean. 

2. Cumulative Residuals (CURE) Plot: 

o A graphical tool that plots the cumulative sum of residuals (differences between observed and 

predicted values) against a covariate or predicted values. It helps identify systematic deviations 

and trends that the model may not have captured. 

3. Root Mean Square Error (RMSE): 

o RMSE measures the average magnitude of the errors between predicted and observed values. It is 

calculated as: 

RSME =  
 

 
           

                               - (6) 

The Cumulative Residuals (CURE) plot is an important graphical tool used in evaluating the fit of prediction 

models. It provides a way to assess how well a model's predictions align with the observed data across the entire 

range of an independent variable. Here’s a more detailed explanation of how the CURE plot is constructed and 

interpreted: 

Construction of the CURE Plot 

1. Calculate Residuals: 

 Residuals are the differences between the observed values and the predicted values from the 

model.  

ri = yi - y^I                                                                          -(7)                  

2. Plotting the CURE Plot: 
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 The cumulative residuals are plotted against the covariate in question, showing how the residuals 

accumulate over the range of the covariate. 

 Additionally, 95% confidence limits are plotted. These limits provide a range within which the 

cumulative residuals should lie if the model is unbiased. 

  

4.0 Results and discussions 

4.1 Calibration factor 

Calibration of Safety Performance Functions (SPFs) from the Highway Safety Manual (HSM) is crucial to account 

for variations in crash data between different jurisdictions and for factors not included in the model. The reasons for 

these variations are numerous and can include differences in climate, reporting criteria, topography, animal 

population, law enforcement practices, vehicle characteristics, and other local factors. Here's a detailed explanation 

of the importance of calibration and how it is applied, particularly in the context of Louisiana: 

Importance of Calibration 

1. Jurisdictional Differences: 

o Crash frequencies can vary significantly from one jurisdiction to another due to local conditions 

and practices. For example, differences in crash reporting thresholds and system procedures can 

lead to discrepancies in recorded crash frequencies. 

2. Factors Not Included in the Model: 

o The default SPFs from the HSM may not account for all factors that influence crash frequencies. 

Local conditions such as climate, topography, animal population, and law enforcement practices 

can affect crash rates and need to be considered. 

3. Adjusting for Over prediction or Under prediction: 

o Calibration ensures that the SPF is adjusted to accurately reflect local conditions. For instance, in 

Louisiana, the HSM default SPFs were found to significantly over predict the number of crashes at 

three-leg and four-leg TWSC intersections on rural two-lane highways. 

4.2 Delhi-specific SPFs development results 

In the context of rural two-lane, two-way stop-controlled (TWSC) three-leg and four-leg intersections, three models 

with identical structures were developed to predict different crash severity levels. These models were specifically 

focused on: 

1. Total Crashes 

2. Fatal and Injury Crashes 

3. Property Damage Only (PDO) Crashes 

The Negative Binomial (NB) regression model was employed for these estimations due to its ability to handle 

overdispersed crash data, where the variance exceeds the mean. R programming was used to perform the model 

estimation. 

Model Development Process 

1. Data Collection and Preparation: 

o Gather crash data, geometric design details, traffic volumes, and other relevant variables for the 

intersections. 
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o Classify the crash data into three severity levels: total crashes, fatal and injury crashes, and PDO 

crashes. 

2. Negative Binomial Model Estimation Using R: 

o R Programming: R is a powerful statistical computing environment that provides tools for fitting 

NB regression models. 

o Package Utilization: The MASS package in R, which includes the ‘glm.nb()’ function, is 

commonly used for estimating NB models. 

 

# Load the necessary package 

library(MASS) 

# Assume 'data' is a data frame containing the crash data and explanatory variables 

# 'total_crashes' is the dependent variable for total crashes 

# 'fatal_injury_crashes' is the dependent variable for fatal and injury crashes 

# 'pdo_crashes' is the dependent variable for PDO crashes 

# 'x1', 'x2', ..., 'xk' are the explanatory variables 

# Total Crashes Model 

total_crash_model <- glm.nb(total_crashes ~ x1 + x2 + x3 + ... + xk, data = data) 

# Fatal and Injury Crashes Model 

fatal_injury_crash_model <- glm.nb(fatal_injury_crashes ~ x1 + x2 + x3 + ... + xk, data = data) 

# PDO Crashes Model 

pdo_crash_model <- glm.nb(pdo_crashes ~ x1 + x2 + x3 + ... + xk, data = data) 

# Summary of the models 

summary(total_crash_model) 

summary(fatal_injury_crash_model) 

summary(pdo_crash_model) 

 

 

 

 

 

 

 
 

Fig. 5 SPFs development results 

TANZ(ISSN NO: 1869-7720)VOL20 ISSUE 6 2025

PAGE NO: 19



 

Fig. 6.CURE plots for HSM calibration model vs. SPF on three-leg intersections. 

 

 

Fig. 7 CURE plots for HSM calibration model vs. Louisiana-specific SPF on four-leg intersections. 

4.3 CURE plots 

The Cumulative Residuals (CURE) plots for both the HSM model with calibration and the Louisiana-specific SPFs 

provide insight into the model's performance across different ranges of average annual daily traffic (AADT) on 

three-leg and four-leg intersections. Here's a detailed interpretation of the findings based on the provided CURE 

plots: 

Three-Leg TWSC Intersections 

1. AADT Below 2500: 

o Underestimation of Crashes: For AADTs below approximately 2500, the HSM model with 

calibration tends to underestimate the total number of crashes. This means that the observed 

number of crashes is greater than the predicted number, indicating that the calibration did not fully 

account for the factors influencing crash frequency in this range. 
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o CURE Plot Interpretation: In the CURE plot, this underestimation would be reflected by 

cumulative residuals that trend above the 95% confidence limits, showing a positive bias. 

2. AADT Above 2500: 

o Over prediction of Crashes: For AADTs exceeding 2500, the HSM model with calibration over 

predicts the total number of crashes. This suggests that the model predicts more crashes than 

actually observed, indicating an over compensation in the calibration process. 

o CURE Plot Interpretation: This over prediction is reflected by cumulative residuals trending 

below the 95% confidence limits, showing a negative bias. 

Four-Leg TWSC Intersections 

While specific details about four-leg intersections were not mentioned, similar principles apply. We can infer that 

the CURE plots for these intersections would also show the performance of the HSM model with calibration 

compared to the observed data across different AADT ranges. 

 

Fig. 8 Major AADT 

 

Fig. 9 Minor AADT 
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5.0. Conclusion 

The analysis of the CURE plots for the HSM model with calibration highlights the importance of regional-specific 

adjustments in predictive modeling. While the calibrated HSM model provides a starting point, developing 

Louisiana-specific SPFs can better capture the local crash dynamics, leading to more accurate and reliable safety 

performance predictions. This approach helps ensure that safety interventions are appropriately targeted and 

effective in reducing crashes at rural intersections. By developing and calibrating these NB models for different 

crash severity levels, transportation engineers can achieve a more nuanced understanding of crash patterns at rural 

two-lane TWSC intersections. This approach allows for better-targeted safety improvements and more effective 

allocation of resources to reduce crashes and enhance road safety. 

The results from the NB models underscore the importance of considering multiple factors in intersection safety 

analysis. While AADT is a primary predictor, curve radius and intersection skewness also play significant roles in 

determining crash frequency. By addressing these factors through thoughtful design and targeted interventions, 

transportation engineers can improve safety at rural two-lane intersections. 

Incorporating these insights into the development of Louisiana-specific SPFs ensures that predictive models are 

finely tuned to the unique conditions of the region, leading to more effective safety measures and ultimately 

reducing the number of crashes. 

The results from the NB models reveal that, besides Average Annual Daily Traffic (AADT), factors such as curve 

radius and intersection skewness significantly impact intersection safety. Here’s a detailed analysis of these findings: 

1. Average Annual Daily Traffic (AADT) 

 Impact on Crash Frequency: AADT is a critical factor in predicting crash frequency. Generally, higher 

traffic volumes correlate with a higher likelihood of crashes due to increased exposure and interaction 

between vehicles. 

2. Curve Radius 

 Impact on Crash Frequency: The models indicate that a greater curve radius leads to a smaller expected 

number of crashes at rural two-lane, three-leg, and four-leg intersections. 

o Explanation: Larger curve radii imply gentler curves, which are easier for drivers to navigate. 

Gentler curves reduce the risk of losing control or misjudging the roadway, leading to fewer 

crashes. 

3. Intersection Skewness 

 Impact on Crash Frequency: Intersection skewness, or the angle at which roads intersect, also affects 

crash frequency. 

o Explanation: Skewed intersections (those not meeting at right angles) can be more challenging 

for drivers to navigate, increasing the risk of crashes. Proper alignment and minimizing skewness 

can enhance visibility and decision-making for drivers, thereby improving safety. 
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