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Abstract 

The application of biosensors in food fermentation processes has revolutionized the monitoring 

and control of microbial activity, ensuring improved quality, safety, and efficiency in food 

production. Biosensors offer rapid, real-time, and specific detection of various biochemical 

parameters such as pH, sugar content, alcohol levels, and microbial metabolites. These devices 

combine biological recognition elements with transducers to convert biochemical signals into 

measurable outputs, enabling precise control of fermentation stages. Their integration into 

fermentation systems allows for automation, reduction of human error, and enhancement of 

product consistency. Moreover, biosensors play a crucial role in detecting contamination and 

spoilage early in the process, thereby ensuring food safety. This abstract highlights the growing 

significance of biosensor technology in modern food industries, particularly in the fermentation 

of dairy, alcoholic beverages, and traditional fermented products. The continued advancement 

of biosensor design and functionality promises a future of smarter, more sustainable food 

processing methods. 

1. Introduction 

Food types are raw, processed, or prepared substances that people or other living things take 

orally for various reasons, such as growth, wellbeing, satisfaction, joy, and gratification of 

social needs. Food protection is a practise or a tactic for maintaining food types at the 

appropriate level of qualities or nature for their greatest benefits. The properties of food are 

generally influenced by each phase of care, handling, storage, and distribution, which may or 

may not be pleasant. Understanding how each protection approach affects food sources and 

how to take care of them is essential for handling food that results in protected food (Rahman 

2007). Keeping an eye on the health and wholesomeness of food is crucial. There is a 

requirement to develop quick, delicate, and reliable procedures for swiftly monitoring food 

quality and security because the conventional logical techniques for quality and wellbeing 
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investigations are really dull, laborious, and demand prepared individuals. In this context, a 

biosensor is a good alternative to the conventional methods. 

Because of their speed, specificity, ease of mass production, cost, and applicability in specific 

fields, biosensor devices are emerging as one of the most important analytical tools for food, 

clinical, and environmental testing. They derive their uniqueness from the natural limiting 

response, which is brought about by a variety of interactions, including those between an 

antigen and its counteracting agent, a protein and a substrate or cofactor, a receptor and a 

ligand, compound interactions, and nucleic acid corrosive hybridization in combination with a 

variety of transducers. The current study illustrates a few applications for biosensors in food 

processing and security. 

1. Biosensor  

It is defined as a quantitative or semiquantitative logical instrumental technique that 

incorporates a natural-source detection component that is either built into or in close proximity 

to a physicochemical transducer (Turner et al. 1987). A synthetic sensor is a device that 

transforms compound data into a scientifically useful signal by centralising one specific 

example portion to doing an extensive organisation analysis. Typically, synthetic sensors 

consist of a physicochemical transducer and a compound (sub-atomic) acknowledgment 

system (receptor), which are connected in series. Moreover, biosensors are artificial sensors in 

which the acknowledgement framework connects the optoelectronic framework using a 

biochemical tool (Cammann 1977; Turner et al. 1987). a device that distinguishes material 

compounds typically using electrical, thermal, or optical signals by using specific biochemical 

reactions mediated by tissues, organelles, immune systems, or entire cells (Nic et al. 2006). 

 

Fig. 1 Schematic representation of biosensor components 
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Prerequisites for a biosensor 

The following conditions must be met in order to develop a biosensor framework that will be 

successful and appropriate for use in industry. 

1. Selectivity: The biosensor gadget ought to be profoundly specific for the target analyte and 

demonstrate least or no cross reactivity with moieties having comparable substance 

structure. 

2. Sensitivity: The biosensor device should be able to measure within the range of interest for 

a specific objective analyte with the least number of further advancements, such as 

precleaning and recentralization of the samples. 

3. Linearity of response: The concentration range over which the target analyte is to be tested 

should be covered by the system's linear response range. 

4. Reproducibility of signal response: The results of many analyses of samples with the 

same concentrations should be consistent. 

5. Quick response time and recovery time: The response time of the biosensor device 

should be quick enough to allow for effective real-time monitoring of the target analyte. 

For the biosensor system to be reused, the recovery time must be brief. 

6. Stability and operating life: Because of this, the majority of biological molecules are 

unstable under various biochemical and environmental circumstances. In order to make the 

gadget marketable and realistically effective in the field, the biological element employed 

should be interfaced such that the activity is retained for a long period. 

Working principle 

The basic operation of a biosensor is explained here. The transducer which makes advantage 

of a physical change that comes along with the reaction, is the essential part of a biosensor. 

This may be 

• The reaction's emission (or absorption) of heat (Calorimetric biosensors) 

• modifications to electrical or electronic output (Electrochemical biosensors) 

• Redox response (Amperometric biosensors) 

• Depending on the mass of the reactants or products (Piezo-electric biosensors) or the 

difference in light output or light absorption between the reactants and products (Optical 

biosensors). 

The transducer's electrical signal is frequently erratic and noisy. A "reference" baseline signal 

produced from a transducer with a similar signal but no bio catalytic membrane should be 

utilised to improve the signal to noise ratio. The signal difference is incredibly small and 
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amplified as a legible output. The signal's undesirable noise is eliminated via the 

aforementioned technique. An amplifier produces an analogue signal, which is often 

transformed to a digital signal and sent to a microprocessor. The information is processed, 

transformed into concentration units, and output to a display or data repository (Chaplin 2004). 

 

3. Historical Developments 

First generation enzyme sensors 

 The study on biosensors is credited to Leland Charles Clark Jr. His initial work on the electrode 

to measure blood oxygen levels appeared in 1956. (Clark 1956). In 1962, he discussed "how to 

make electrochemical sensors (pH, polarographic, potentiometric, or conductometric) smarter" 

by include "enzyme transducers as membrane encased sandwiches" in his talk at a symposium 

hosted by the New York Academy of Sciences. An experiment that used a dialysis membrane 

to trap glucose oxidase at a Clark oxygen electrode served as an illustration of the model. As 

glucose concentration rose, so did the measured oxygen concentration. (1962, Clark and 

Lyons). The work of Clark was expanded upon by Updike and Hicks in 1967, and they 

developed the first working enzyme electrode based on glucose oxidase mounted on an oxygen 

sensor. In vitro glucose measurements were made in biological fluids and tissues (Updike and 

Hicks 1967). The first potentiometric enzyme electrode was introduced by Guilbault and 

Montalvo in 1970. It was an ammonium (NH4+) selective liquid membrane electrode-based 

urea-sensor, according to Guilbault and Montalvo in 1970. A glucose and lactate enzyme 

sensor based on hydrogen peroxide detection at a platinum electrode was first described by 

Guilbault and Lubrano in 1973. (Guilbault and Lubrano 1973). A heat-sensitive enzyme sensor 

known as a "thermistor" was created by Klaus Mosbach in 1974. (Mosbach and Danielsson 

1974). 

With the successful re-launch (original launch 1973) of the Yellow Springs Instrument 

Company's glucose analyser based on the Amperometric detection of hydrogen peroxide, 

Clark's concepts became a commercial reality in 1975. When Divis proposed that bacteria may 

be used as the biological element in microbial electrodes for the measurement of alcohol in 

1975, the biosensor experienced another novel evolutionary step (Divis 1975). The term 

"optode" was first used in 1975 by Lubbers and Opitz to refer to a fiber-optic sensor that 

measures carbon dioxide or oxygen (Lubbers and Optiz. 1975). They expanded the idea by 

paralysing alcohol oxidase on the end of a fiber-optic oxygen sensor to create an optical 
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biosensor for alcohol. 

Second generation enzyme sensors 

A bedside artificial pancreas with an electrochemical glucose biosensor was built by Clemens 

et al. in 1976, and Miles later sold it as the Bio-stator. Notwithstanding the Bio-commercial 

stator's unavailability, VIA Medical unveiled a cutting-edge, catheter-based semi-continuous 

blood glucose analyzer. Later in 1976, La Roche (Switzerland) released the Lactate Analyzer 

LA 640, in which lactate dehydrogenase's electrons were transferred to an electrode using the 

soluble mediator hexacyanoferrate (Geyssant et al. 1985). 

Third generation enzyme sensors 

Based on the utilisation of electron mediators, third generation enzyme sensors resemble 

second generation enzyme sensors. Instead of freely diffusing mediators in the electrolyte, they 

have advanced to the point where they apply co-immobilized enzymes and mediators onto the 

same electrode. There was no need for a mediator or enzyme because there was a direct contact 

between the redox centre of the enzyme and the electrode. Recurrent measurements were thus 

made possible, which lowers the price of sensor design (Cass et al. 1984). 

Liedberg employed the surface Plasmon resonance (SPR) technology in 1983 to continuously 

monitor affinity processes (Liedberg et al. 1983). Turner and his associates were there in 1984. 

 

released a study on the use of ferrocene and its derivatives as immobilised mediators for use 

with oxidoreductases in the construction of inexpensive enzyme electrodes. The screen-printed 

enzyme electrodes that MediSense, Cambridge, USA, introduced in 1987 with a pen-sized 

metre for at-home blood-glucose monitoring was built on this foundation. The electronics were 

redone in the style of popular credit cards and computer mice, and MediSense’s sales increased 

exponentially, reaching US $175 million by 1996. The market for biosensors has enormous 

potential for growth and will reach $12 billion by 2015 (Anon 2012b). 

 

4. Types of Biosensors 

S. N TYPE OF 

BIOSENSOR  

MECHANISM  ANALYTE  REFERENCE 

1 Polarographic oxygen 

electrode  

Electrode based  Oxygen in Blood  Clark 1956 
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2 Electrochemical  Enzyme 

electrode 

(Glucose 

oxidase) 

Glucose Updike and 

Hicks 1967 

3 Potentiometric  Enzyme 

electrode 

(Urease)  

Urea Guilbault and 

Montalvo 1970 

4 Amperometric  Electrode with 

immobilised 

glucose oxidase 

Blood 

glucose Guilbault and 

Lubrano 1973 

5 Optical  Fluorescence pCO2 - /pO2 - in 

fluids and gases 

Lubbers and 

Optiz 1975 

6 Amperometric Dual enzyme 

electrode system 

Organophosphorous 

pesticides 

Gouda et al. 

1997 

7 Immuno-

chemiluminescence 

Charge coupled 

device 

Methyl parathion Chouhan et al. 

2006 

8 Optical FRET (Forster 

resonance 

energy transfer) 

Formaldehyde Akshath et al. 

2012 

9 Immuno-

chemiluminescence 

Dipstick Vitamin B12 Selvakumar 

and Thakur 

2012a 

10 Microbial Whole cell 

immobilization 

Caffeine Babu et al. 

2007 

11 Optical microbial 

biosensor 

Bioluminescence Heavy metals and 

pesticides 

Ranjan et al. 

2012 

12 Aptasensors Aptamer Vitamin B12 Selvakumar 

and Thakur 

2012b 
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5. Biosensors  

Importance and Applications of Biosensors in Fermentation Monitoring 

Biosensors can provide real-time feedback on the progress of fermentation by monitoring: 

• pH levels 

• Sugar consumption 

• Ethanol and lactic acid production 

• Microbial activity 

• Oxygen and carbon dioxide levels 

These parameters are critical in ensuring product quality, taste, texture, and safety. 

5.1. Dairy Industry 

In yogurt and cheese production, biosensors are used to monitor: 

• Lactic acid concentration (critical for fermentation end-point detection) 

• Glucose levels 

• Enzyme activity 

Example: Lactate biosensors help optimize fermentation time, reducing production costs and 

ensuring consistent flavor and texture. 

5.2. Beverage Industry 

In wine and beer production: 

• Ethanol biosensors measure alcohol content during fermentation. 

• Glucose and fructose biosensors assess residual sugars. 

• pH biosensors ensure ideal conditions for yeast activity. 

Example: Electrochemical biosensors are employed in breweries to monitor glucose and 

ethanol levels, providing data to control fermentation speed. 

5.3. Soy Sauce and Fermented Vegetables 
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• Monitoring salt concentration and amino acid profiles using biosensors. 

• Detection of spoilage microorganisms through biosensor arrays. 

Example: Optical biosensors can detect histamine levels in fermented soy products, which is 

essential for food safety. 

 

6. Advantages of Using Biosensors in Fermentation 

• Speed: Immediate feedback compared to traditional analytical methods. 

• Accuracy: High specificity to target molecules. 

• Portability: On-site, real-time measurements are possible. 

• Automation: Compatible with automated systems for large-scale production. 

• Cost-effectiveness: Reduces the need for extensive lab tests and personnel. 

7. Future Prospects 

Despite their advantages, biosensors face challenges: 

• Stability and lifespan of biological components. 

• Calibration and maintenance requirements. 

• Integration with large-scale production systems. 

Future advancements may include: 

• Nano-biosensors with higher sensitivity. 

• Wireless and IoT-enabled sensors for remote monitoring. 

• Multi-analyte sensors capable of monitoring several fermentation parameters 

simultaneously. 

8. Conclusion 

In the food sector, quality control is a major focus area. Quick methods to check the quality of 

the food are urgently needed.  The process of quality monitoring is sped up by improvements 

in adept sensors, which are also economical.  Before the advantages of the nano-biosensor can 

be effectively employed in the identification of contaminants in foods, a number of scientific 
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and technological challenges must be overcome. Biosensors have undergone significant 

miniaturisation recently. High enzyme activity microbial cells might be necessary to keep up 

with such advancements. This is particularly important when using microbial cells in place of 

enzyme-based sensors. Due to their low cost, long lifespan, and wide range of acceptable pH 

and temperature, microorganisms have been widely used as the biosensing component in the 

development of biosensors. A more thorough investigation of the relationship between the food 

system and technological factors must be conducted in order to overcome the difficulties 

associated with biosensor technologies and their use in the food matrix. Future sensor 

developments should concentrate on signal transmitters for remote sensing in conjunction with 

multiple-analyte identification. These developments will greatly speed up a number of 

application areas in the food industry while maintaining a certain degree of normative animal, 

human, and environmental health for a rapidly evolving world. 

It is necessary to lower the physical size of the biosensing devices for numerous food analyses 

without sacrificing the device's specificity and sensitivity. The market for lab-on-chip 

biosensor systems is expanding. The market for biosensors as well as their applications in 

various foodstuffs will grow as a result of new biosensing materials that are designed for high 

sensitivity, selectivity, stability, and low material synthesis costs. It should be easy to handle 

biosensors so that anyone may utilise them. To advance in the field of biosensing, biosensor 

research should be supported with adequate funding and facilities for research teams. Because 

they combine the great sensitivity of biosensing and the high specificity of biochemical 

reactions, biosensors have drawn attention recently. The recognition element and the electrode 

are the two fundamental parts of a biosensor. The recognition component (bioreceptor), which 

is immobilised on the electrode surface, is in charge of detecting the target analytes through 

particular biochemical processes. For the purpose of creating prototypes for applications such 

as environmental monitoring, food safety, or clinical analysis, it is crucial to improve the 

analytical performance of biosensors. As a result, current research has concentrated on 

improving the analytical performance of biosensors. When developing biosensors, it's crucial 

to consider factors like high sensitivity, a broad operating range, excellent selectivity, and 

strong reproducibility and repeatability.  The subject of biosensors is expanding quickly and 

includes a number of disciplines, including environmental science, agriculture, and medicine. 

The use of biosensors in the medical industry has expanded significantly, particularly in the 

realm of medical diagnostics. The need for quick methods to assess food quality is important 

because quality control is a significant emphasis area in the food business. Conventional 

techniques are pricy, labour-intensive, and pricey. The process will go more quickly and more 
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cheaply when effective sensors are developed. Research in material science, microfabrication, 

and nanofabrication will advance the creation of appropriate sample preparation stages, such 

as extraction, concentration, and isolation. Biosensor is an interdisciplinary field covering 

several domains. Future sensor innovations must prioritise the provision of multi-analyte 

detection together with distant signal transmitters. 
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