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J-separation axioms, (v,%)-normal and (v, 7)-regular spaces
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Abstract

In this paper, we create a new type of separation spaces -Ro and 4-R; through #-open
sets and study some of their characterizations and relationships between 4-Tp, 4-T1 and A-15
spaces. Also, we introduce (y,#)-normal and (v, ¥)-regular spaces and study their important
properties through operation mappings.
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1 Introduction

Kasahara[14] introduced the concept of operation topology, subsequently Jankovic[10] developed
the operation-closed graphs. Ogata[20, 21] defined 7-operation on a topology and investigated
the relationships between -closure and 7.,-closure operators and obtained the concept of v-T;
(i =0, %, 1,2) spaces through ~-closed and ~-open sets. Umehara et.al.[36] and Ogata[22] dis-
cussed the bioperation concept in operation topology with some separation axioms. Levine[16]
defined the notion of generalized closed set in topology and Maki et.al.[18] created a yg-closed set
in operation topology. Dunham(9] introduced T spaces and Levine[15] defined a semi-open set
in topology. Sai Sundara Krishnan et.al.[23] modified the concept of semi-open as v-semi-open
in operation topology and studied the v-semi-separation axioms. Saravanakumar et.al.[24, 29, 32]
initiated a §-open set (resp. y*-pre-open) set in operation topology and fi-open set in general topol-
ogy and studied ¥-T; (resp. v*-pre-T;, i-T;), (i = 0, %, 1,2) spaces using through the 4-open (resp.
~*-pre-open, fi-open) and J-closed (resp. v*-pre-closed, ji-closed) sets. Saravankumar et.al.[25, 27,
30, 32, 33, 34, 35] created various types of operation continuous mappings in operation topology
as well as generalized continuous in general topology and discussed some important properties. In
1,2,3,4,5,6,7,8,9,11, 12, 13, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 31, 32, 34, 36, 37], they
introduced new type of separation axioms such as x-T; (i = 0, 3,1,2), k-R; (j = 0,1), x-normal
and s-regular spaces (here ”k” stands for semi, pre, Ag, u, 7, Y*-pre, 7 etc.) in the fields of general
topology, generalized topology, operation topology and discussed some of their relationships and

properties.

In this paper, we introduced new notion of operation separation axioms ¥-Ry and 7-R; spaces and
obtained that every 4-R; space is 4-Rg, but the converse need not be true. Also, we investigated
their relationships between 4-Tj, 7-11 and 4-T5 spaces and studied some of their important prop-
erties. Moreover, we defined the concepts of (7, 7%)-normal and (v, 7)-regular spaces and discussed
the characterizations through 4-open and 4-closed sets. In addition, we proved that topological
space X is (v, 7)-normal (resp. (v,7)-regular) if f : X — Y is a (v, 3)-closed and (7, /3)-continuous,
injective mapping and Y is a (3, 8)-normal (resp. (8, 5)-regular) space.

2 Preliminaries

Throughout this paper, we consider the topological spaces (X, 7) and (Y, o) by X and Y resp.
An operation 7[20] on the topology 7 is a mapping from 7 into the power set P(X) of X such
that V. C V7 for each V € 7, where V? denotes the value of v at V. Similarly, an operation
$ on the topology ¢ is a mapping from o into the power set P(Y) of Y such that W C W#
for each W € o, where W# denotes the value of B at W. A subset A of X is y-open[20], if
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for each z € A, there exist an open neighborhood U such that z € U and UY C A. Its com-
plement is called v-closed and 7,[20] denotes set of all y-open sets in X. For a subset A of X,
y-interior[20] of A is inty(A) ={r € A:x € N € 7 and N7 C A for some N}; y-closure[20] of A is
cdy(A)={zeX:zecUecrand U'NA# Dfor all U}; 7,-int(A)[20] = U{G : G C Aand G € 7, };
Ty-cl(A)[20) = {F : AC F and X\ F € 7,,}. A subset A of X is yg-closed[20] if cl,(A) C U
whenever A C U and U is y-open in X. For a subset A of X, cl%(A)[18] denotes the intersection of
all yg-closed sets containing A, that is the smallest yg-closed set containing A; intf/(A)[18] denotes
the union of all yg-open sets contained in A, that is the largest ~yg-open set contained in A. If A
is a subset of X and x € X, then (i) = € cl%(A)[18] if and only if M N A # () for each yg-open set
M containing =; (ii) cl% (X \ A)[18] = X \int3(A) and (iii) cl%(cl3(A))[18] = cl5(A). A subset A of
X is y-semi-open[23] if A C 7,cl(7yint(A)) and vSO(X)[23] denotes the family of all y-semi-open
sets in X. A subset A of X is said to be a ¥-open set[32], if there exists a set U € 7, such that
U C ACcl(U). Its complement is called 7-closed. The family of all -open sets is denoted by
FO(X). For A C X, #-interior of A[32] is int5(A) = U{U : U € ¥O(X) and U C A} and A-closure
of A[32]is cl5(A) =N{F : X—F € 40(X) and A C F'}. A subset A of X is said to be ¥g-closed[32]
if ¢l5(A) C U whenever A C U and U is 4-open in X. A subset A of X is said to be Jg-open[32]
if F Cint5(A) whenever F' C A and F'is J-closed in X. The family of all #g-open sets is denoted
by yGO(X). A space X is said to be (i) 4-Tp[32] if for each pair of distinct points z,y € X, there
exists a 4-open set U such that x € U and y ¢ U or y € U and z ¢ U; (ii) 3-T1[32] if for each
pair of distinct points x,y € X, there exists a 4-open sets U and V' contain x and y respectively
such that y ¢ U and = ¢ V; (iil) 4-T2[32] if for each pair of distinct points z,y € X, there exists a
~-open sets U and V such that z € U and y € V and UNV = (. A mapping f: X — Y is said
to be (v, 8)-open[20] (resp. (v, 8)-closed[20]) if for each y-open set U (resp. y-closed) of X, f(U)
is B-open (resp. fB-closed) in Y. A mapping f: X — Y is said to be (v, 3)-continuous[20] (resp.
(¥, B)-continuous[32]) if for any B-open V (resp. B-open) of Y, f~1(V) is y-open (resp. §-open)
in X.

Definition 2.1. For a subset A of X, kery(A) = "{U : U € ¥O(X) and A C U} is called §-kernel
of A.

Definition 2.2. A subset A of a topological space X is said to be g¥-closed if cl5(A) C U when-
ever A C U and U is y-open in X. A subset A of a topological space X is said to be g¥-open if
F Cint5(A) whenever FF C A and F is y-closed in X. The family of all gj-open sets is denoted
by GyO(X).

Definition 2.3. A mapping f: X — Y is said to be (&,é)—open, (resp. (7, )-closed if for each
A-open set U (resp. J-closed) of X, f(U) is S-open (resp. S-closed) in Y.

Remark 2.1[32]. Let X be a topological space. Then for a point € X, z € ¢l5(A) if and only
if VNA#0D for any V € 4O(X) such that z € V.

Remark 2.2 Let X be a topological space. If A is a 4-open set in X, then A is g5-open in X.

Lemma 2.1. The following properties hold for subsets A, B of a topological space X:
(i) = € kers(A) if and only if AN F # () for any 4-closed set F' of X containing z;

(i) A C kers(A) and A = kery(A) if A is 3-open in X;

(iii) if A C B, then kers(A) C kers(B).

Proof. Follows from the Definition 2.1.
Lemma 2.2. For A C X, ker;(A) = {z € X : cl5({z}) N A # 0}.

Proof. Let z € kers(A). If cls({z}) N A = 0, then =z ¢ X — cl5({z}), which is a F-open set
containing A. Thus z ¢ kers(A), a contradiction. Hence cl5({z}) N A # 0. Conversely, let z € X
be such that cly({z}) N A # 0. If possible, let & ¢ kers(A). Then there exists U € YO(X) such
that 2 ¢ U and A CU. Let y € cly({z}) N A. Then y € cl5({z}) and y € U, which gives z € U, a
contradiction. Hence = € ker;(A).
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3 7-R; spaces

Definition 3.1. A topological space X is said to be 4-Ry if for each §-open set U, x € U implies
that cl;({z}) CU

Example 3.1. Let X = {a,b,c}, 7 = {0, X, {a},{c},{a,c},{b,c}} and define an operation ~ :
7 — P(X) by

_ [ AU{a} it A={c}
AW—{ cl(A)a ifA;é{cc} for every A € 7.

Then YO(X) = {0, X, {a}, {b,c}}. Hence X is 3-Ro.

Theorem 3.1. Let X be a topological space and =,y € X. Then y € kers({z}) if and only if
€ cl5({y})

Proof. Let y € kery({z}). If ¢ cl5({y}), then 2 ¢ N{F : X — F € 40(X) and {y} C F'} implies
that t € X —Fand y ¢ X — F. Thereforey ¢ {X —F: X — F € 30(X) and {2} C X — F'} and
hence y ¢ ker;({z}), which is a contradiction. Thus z € cl5({y}). Conversely, let x € cl5({y}). If
y ¢ kery({z}), then y ¢ N{U : U € YO(X) and {«} C U} implies that y € X —U and = ¢ X — U.
Therefore x ¢ N{X —U : U € ¥O(X) and {y} € X — U} and hence = ¢ cl5({y}), a contradiction.
Thus y € kers({z}).

Theorem 3.2. In a topological space X, the following statements are equivalent:

(i) X is -Ro;

(ii) for each A-closed set F' and a point x ¢ F', there exists a G € YO(X) such that z ¢ G and
F CG;

(iii) for each 4-closed set F and = ¢ F, cly({z}) N F = 0.

Proof. (i) = (ii). Let F be A-closed and = ¢ F. Then X — F is 4-open and z € X — F. By
(i) cly({z}) CX —F, X — Fis y-open and x € X — F. Let G = X — cl5({z}) is #-open. Since
zecds({z}) = ¢ X —cs({z}) =2 ¢ G.

(ii) = (iii). Let F be a -closed set and = ¢ F. Then by (ii), there exists a -open set G,z ¢ G
and F C G. Thusz € X —G C X — F. Hence X — G is 7-closed containing x and we have that
cs({z}) N (X — G) # 0 implies that cl5({z}) € X — G. Therefore G N cly({z}) = 0 and hence
Fndsy({z}) =0.

(iii) = (i). Let F is 4-closed = ¢ F', cls({z})NF = 0. Let U be -open and « € U. Then X —U is ¥~
closed and = ¢ X —U. By (iii), cl5({z})N(X —U) = 0 implies that cl5({z}) C U. Hence X is -Ry.

Theorem 3.3. A topological space X is 4-Ry if and only if for each pair of z,y € X and x # vy,

cs({z}) Nely({y}) = 0 (or) {z,y} € cls({x}) N el ({y}).

Proof. Let X be a 4-Ry space. If cl5({z})Nels({y}) # 0 = {z,y} C cl5({z})Nel5({y}). Suppose
fo.y} € dls({z}) N els({y}). Let = € cs({o}) N els({y}) and @ ¢ ds({z}) N el5({y}). Then
x ¢ cl5({y}) which implies that x € X — cl5({y}). Let x € U, U = X — cl5({y}) and U is F-open.
But if z € cl5({z}) then z € cl5({y}) and z ¢ X — cl5({y}), 2 ¢ U. (ie) cl5({z}) € U which is a
contradiction to -Ry space. Conversely let cl5({z}) Nely({y}) = 0 or {z,y} C cls({z}) Nels({y})
and let U be a §-open such that z € U. Suppose cl5({z}) ¢ U then there exists a element
y € cls({z}) and y ¢ U and cl5({y}) NU = 0. Since X — U is J-closed and y € (X — U). Thus
{z,y} € cls({z}) Nels({y}) and so cls({z}) Nels({y}) # 0, which is a contradiction. Hence X is
A-Ry.

Theorem 3.4. In a topological space X, the following statements are equivalent.
(i) X is 3-Ro;

(ii) for each z € X, cl5({z}) C kers({z});

(iii) for each z,y € X and y € kers({z}) if and only if z € ker;({y});
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(iv) for each z,y € X and y € cly({z}) if and only if = € cl5({y});

(v) for each A-closed set F' and a point x ¢ F, there exists a U € O(X) and F C U;
(vi) for each A-closed set F' can be expressed as FF' =N {U : U € 30(X) and F C U};
(vii) for each F-open set U,U = U{F : X — F € 50(X) and F C U},

(viii) for each A-closed set F,z ¢ F implies cl5({z}) N F = 0.

Proof. (i) = (ii). By Definition 3.1, ker5({z} = N{U : U € ¥O(X) and {z} C U}}. Then by (i),
each J-open set U containing = and contains cl5({z}).

(ii) = (iil). For any z,y € X, if y € kers({x}, then by Theorem 3.1, z € cl5({y}). By (i),
x € ker;({y}). Conversely, if € kers({y}), then by Theorem 3.1 ,y € cl5({z}). By (ii)
y € ker;({x}).

(i) = (iv). For any z,y € X, if y € cl5({z}), by Theorem 3.1, z € kers({y}). By (iii)
y € kery({x}). By Theorem 3.1, z € cl5({y}). The converse part is similar.

(iv) = (v). Let F be a J-closed set and a point ¢ F. Then for any y € F, cl5({z}) C F and so
x ¢ cls({y}). By (iv) if « ¢ cl5({y}) then y ¢ cl5({z}), implies that there exists a J-open set U,
such that y € Uy and = ¢ U,. Let U = Uyep{U, : U, € ¥O(X),y € U, and = ¢ U, }. Then by
Theorem 3.4[6], U is -open such that © ¢ U and FF C U.

(v) = (vi). Let F be 4-closed set and H = N{U : U € YO(X) and F C U}. Clearly F C H. Let
x € H. Suppose x ¢ F. By (v) there exists a ¥-open set U such that ¢ U and F' C U, and hence
x ¢ H. Therefore, each §-closed set F' can be expressed as F = N{U : U € ¥O(X) and F C U}.

(vi) = (vii). It is trivially true as U = U{F : X — F is -open and F C U}.

(vii) = (viii). Let F be a A-closed set and z ¢ F. Then X — F = U, is a -open set con-
taining . By (vii) we have U can be written as the union of 4-closed sets and so there is a
J-closed set H such that # € H C U and hence cl5({z}) C U. Thus cl5({z}) N F = 0.

(viii) = (i). Let U be a 4-open set and « € U. Then by (viii) there exists a §-closed set F' such
that z € F C U and cly({z}) N F # 0. Therefore cl5({z}) C F and hence cl3({z}) C U. Thus X
is 4-Rg space.

Theorem 3.5. For any two points z,y € X in a §-R space we have either cl5({z})Ncls({y}) =0

(or) cly({x}) = cl5({y})-

Proof. Let X be a 3-Ry space. Suppose cly({z}) # cl5({y}) and cly({z}) N cl5({y}) # 0.
Let s € cly({z}) Ncl5({y}) and = ¢ cl5({y}). Then z € X — cl5({y}), is J-open in X. But
cls({z}) € X — cl5({y}), since s € cl5({z}) Ncls({y}), which is a contradiction to the hypothesis
that X is 4-Ry. Hence we have that either cls({z}) Nels({y}) =0 (or) cls({z}) = cl5({y}).

Remark 3.1. The converse of the above theorem need not be true, in general.
Let X = {a,b,c,d}, 7 = {0, X,{a},{d},{a,d},{b,c},{a,b,c},{b,c,d}} and define an operation
~v:7— P(X) by

. A ifA={be}
4 —{ AU{b,d} if A+ {bc}

Then 70(X) = {0, X,{b,c},{a,b,c},{b,c,d}} and satisfies the condition: for any two points
z,y € X, we have either cl5({z}) Ncls({y}) = 0 (or) cly({z}) = cl5({y}). But X is not ¥-
Ry.

for every A € 7.

Theorem 3.6. For any two points x and y in a topological space X, the following statements are
equivalent:

(i) kers({x}) # kers({y});
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(ii) ey ({z}) # cls({y})-

Proof. (i) = (ii). Let kery({z}) # kery({y}). Then there exists z € kers({z}) such that
z ¢ kers({y}). By Theorem 3.1, x € cl5({z}) and y ¢ cl5({z}). As cl5({z}) C cl5({z}) we have
y ¢ cly({x}). Hence cl5({z}) # cly({y})-

(i) = (i). Let cl5({z}) # cl5({y}). Then there exists z € X such that z € cly({z}) and
z ¢ cl5({y}), which implies that there exists a ¥-open set U such that z € U, y ¢ U and x € U

implies that y ¢ kers({z}). Hence kers({z}) # kers({y}).

Theorem 3.7. Let X be a 4-Ry space. Then for any two distinct points z,y € X, kers({z}) #
kers({y}) implies kers({z}) N kers({y}) = 0.

Proof. Let X be a 4-Ry space and kery({z}) # ker;({y}) where z,y € X. Suppose that
kers({z})Nkers({y}) # 0. Let s € kers({z})Nkers({y}). Then s € ker;({z}) and s € kers({y}).
By Theorem 3.4.(iii), we have that x € ker;({s}) and y € kers({s}). Hence ker;({z}) C
kers({s}) C kers({y}) and we have kers({y}) C kers({s}) C kers({z}) implies that kers({z}) =
kers({y}), which is a contradiction. Hence kers({z}) N kers({y}) = 0.

Corollary 3.1. For any pair of points = and y in a topological space X, the following statements
are equivalent:

(i) X is 4-Ry space;

(ii) for each J-closed set F' C X, F' = kers(F);

(iii) for each F-closed set ' C X and z € F, ker;({z}) C F;

(iv) for each x € X, kery({z}) C cl5({z}).

Proof. (i) = (ii). Let F be a A-closed set and # ¢ F. Then X — F is 4-open and z € X — F.
Since X is 4-Ry, cl5({z}) € X — F. Therefore cly({z}) N F = () and by Lemma 3.2, z ¢ kers(F).
Hence ker;(F') C F. By Definition 3.1, F' C kery(F'). Thus F = kers(F).

(ii) = (iil). Let F be a 4-closed set and = € F'. Then {x} C F and ker;({z}) C kers(F). By (ii),
we have that ker;({z}) C F.

(ili) = (iv). Since z € cly({z}) and cly({z}) is a F-closed set in X. Then by (iii), kers({z}) C

cls ({}).

(iv) = (i). Let = € cl5({y}). Then by Theorem 3.1, y € kers({z}). By (iv) y € cl5({z}). Similarly
we can prove if y € cl3({z}) then = € ker;({y} which implies € cl5({y}). Then by Theorem
3.4.(iv), X is 4-Ry space.

Theorem 3.8. In a topological space X, the following statements are equivalent:
(i) X is 3-T3;

(ii) cls({z}) = {«}, for all z € X;

(i) X is 4-Ro and 4-Tp.

Proof. (i) = (ii). Since {z} C cl5({z}). If y ¢ {x}, then there exists a J-open set U such that
y €U, x ¢ U. Therefore U N {z} = 0 and hence y ¢ cl5({z}).

(ii) = (iii). Let =,y € X with z # y. Then {z} and {y} are ¥-closed sets and hence X — {z}
is 4-open set containing y but not x which implies X is 4-Tp. Suppose that U is -open set and
x € U. Then by (ii), cly({z}) = {z} C U. Hence X is 3-Ry.

(iii) = (i). Let =,y € X with z # y. Then there exits -open set U such that x € U and y ¢ U

(say) which implies that cl5({z}) C U and so y ¢ cl5({z}). Hence z € U, U is -open, y ¢ U and
y € X —cly({z}), which is -open, z ¢ X — cl5({y}). Hence X is 3-T7.
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Definition 3.2. A topological space X is said to be 3-Ry if for each z,y € X, cl5({z}) # cl5({y}),
there exists §-open sets U,V such that cl3({z}) C U and cl5({y}) CV and UNV = 0.

Example 3.2. Let X = {a,b,¢,d}, 7 = P(X) and define an operation v : 7 — P(X) by

AuU{c,d} it A= {a}(or){b}
AY=¢ AU{a,b} if A={c}(or){d} forevery A€ .
A Otherwise

Then ;)(IO(X) = {03 X7 {a7 b}? {a" C}’ {a7 d}’ {b’ C}’ {b7 d}’ {67 d}’ {a? b? C}? {a7 b’ d}’ {a" C’ d}? {b7 C7 d}}'
Hence X is ¥-R;.

Theorem 3.9. If X is 4-R;, then it is 4-Ry.

Proof. Let U be a §-open set and z € U. If y ¢ U, since z ¢ cl5({y}), we have that
cls({z}) # cl5({y}). So there exists a -open set V such that cl3({y}) C V and = ¢ V, which
implies that y ¢ cl5({z}). Hence cl5({z}) C U. Hence X is 3-Ry.

Remark 3.2. The converse of the above Theorem 3.9 need not be true in general.
Let X = {a,b,c,d}, 7 = P(X) and define an operation v : 7 — P(X) by
a = { A it A={a,b},{c,d},{a,b,c},{a,b,d},{a,c,d}, {b,c,d}

X Otherwise for every A € 7.
Then YO(X) = {0, X, {a, b}, {c,d},{a,b,c},{a,b,d},{a,c,d}, {b,c,d}}. Hence X is 4-Ry but not
y-Ri.

Theorem 3.10. In a topological space X, the following statements are equivalent:
(i) X is 3-T;

(ii) X is 4-Ry and 4-Ti;

(i) X is 4-R; and 3-Tp.

Proof. (i) = (ii). Let X be a §-Ty space. Then X is clearly 5-7;. Now if z,y € X with
cls({x}) # cl5({y}) then there exists -open sets U and V such that x € U,y € V and UNV = ().
Hence by Theorem 3.8 cl5({z}) = {z} C U and cl5({y}) ={y} CV and UNV = 0. Then X is
¥-R;.

(if) = (iil). It is trivially true.

(iii) = (i). Let X be 4-R; and 4-Tp. By Theorem 3.9, X is 4-Ry = X is 4-Ry. By Theorem 3.8, X
is 4-Ro and 4-Ty = X is 4-T1. Let z,y € X with 2 # y. Then cl5({z}) = {z} # {y} = cl5({y}).
As X is 4-R1, there exists J-open sets U,V such that cl5({z}) = {z} C U, cl5({y}) ={y} CV
and UNV = 0. Thus X is ¥-T5.

Theorem 3.11. In a topological space X, the following statements are equivalent:
(i) X is 3-Ry;
(ii) for any x,y € X one of the following holds:
(a) for -open set U,z € U if and only if y € U;
(b) there exists y-open sets U and V such that z €e U, y € Vand UNV = ().
(iii) if =,y € X such that cl5({z}) # cl5({y}), then there exists §-closed sets F; and F» such that
x € Fl, Yy ¢ Fl,ye Fyx ¢ Fs and X = F| U Fs.

Proof. (i) = (ii). Let z,y € X. Then cl5({z}) = cl5({y}) (or) cl5({z}) # cl5({y}). Suppose
cls({z}) = cl3({y}) and U, J-open set. Then = € U implies that y € cl5({y}) = cly({z}) C U.
Hence y € U. Similarly, we can prove if y € U then « € U. Suppose cl5({z}) # cl5({y}). Then
there exist y-open sets U,V such that z € cl5({z}) CU and y € cl5({y}) CV and UNV = 0.
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(i) = (iii). Let z,y € X such that cly({z}) # cl5({y}). Then x ¢ cl5({y}), so that there exist a
A-open set G such that € G and y ¢ G. Thus by (ii), there exists ¥-open sets U and V such that
reUandyeVand UNV =0. Put F; = X —V and Fy, = X — U. Then F| and F» are ¥-closed
setsand x € Fy,y ¢ Fi,y € Fy, x ¢ Fy and X = F; U Fy.

(iii) = (i). Let U be 4-open set and « € U. Then cl5({z}) C U. In fact, otherwise there ex-
ists y € cly({z}) N (X —U). Then cly({z}) # cl5({y}) and so by (iii), there exists Fy and F
which are 4-closed sets such that © € Fy, y ¢ Fi,y € Fo , © ¢ Fy and X = F; U Fy. Then
yeF, —F=X—F and x ¢ X — Fy, where X — F}, §-open set which is a contradiction to the
fact that y € cly({z}). Hence cl5({z}) C U. Thus X is 4-Ry. To show X is #-R; assume that
a,b € X with cl5({a}) # cl5({b}). Then there exists J-closed sets P; and P» such that x € P,
y¢éPL,yePo,x ¢ Phband X =P UP,. Thusae Py — P, € 30(X),be P, — P, € 30(X). So
cly({a}) € Py — P3 and cl5({b}) € P, — P;. Thus X is 3-R;.

Theorem 3.12. (i) A topological space X is 4-T5 if and only if for z,y € X with z # y there
exists 4-closed sets Fy and Fy such that x € Fy, y ¢ Fy ,y € Fy , x ¢ Fy and X = F; U Fb.

(ii) A topological space X is 4-R; if and only if =,y € X, with kers({z}) # ker;({y}, there exists
y-open sets U, V' such that cl5({z}) C U and cl5({y}) CV and UNV = .

Proof. (i) Follows from Theorems 3.10 and 3.11.
(ii) Follows from Theorem 3.6 and Definition 3.2.

Definition 3.3 Let X be a topological space. Then a net {x,}qcs in X is said to 4-converge to
a point = in X if the net is eventually in every 4-open set containing x.

Lemma 3.1 Let x,y be two points in a topological space X. If every net in X which J-converges
to y also 4-converges to x, then = € cl5({y}).

Proof. Let us consider the net z, = y for each n € N(N - natural numbers). Clearly the net
A-converges to y and hence §-converges to x. Thus if U is -open set with = € U, then {z, }nen
is eventually in U =y € U Thus z € cl5({y}).

Theorem 3.13. Let X be a topological space. Then X is 4-Ry if and only if for every z,y € X,
y € cl5({y}) < every net in X is §-converging to y also J-converges to .

Proof. Let X be 4-Ry. Suppose y € cl5({x}). To prove every net in X is 4-converging to y also
A-converges to z. y € cls({y}) for some z,y € X and let {z,}aecs be a net in X is §-converging
to y. Since y € cl5({z}), cl5({z}) = cl5({y}). Let U be J-open set such that « € U. Then y € U
and hence there exists ag € J such that if @ > «g then z, € U. Thus {24 }acs J-converges to z.
On the other hand, suppose that every net in X is y-converging to y, y-converges to . By lemma
3.1, z € cl5({y}). By Theorem 3.5. cl5({z}) = cl5({y}) and hence y € cly({z}). Conversely, to
prove X to be 4-Ry, let U be ¥-open set and x € U. Let y € X — U. For each n € N, let z,, = v.
Then the net {z,}nen J-converges to y, but {x,} is not J-convergent to . Thus y ¢ cl5({z}).
Hence cl5({z}) C U.

4  (v,7)-normal space and (v,7)-regular space

Definition 4.1. A topological space X is said to be (v, ¥)-normal if for any pair of disjoint y-closed
sets A, B of X, there exists disjoint §-open sets U, V of X such that A C U and B C V.

Example 4.1. Let X = {a,b,c,d}, 7 = {0, X, {a}, {b}, {a, b}, {b,c},{a,b,c},{b,c,d}} and define
an operation v : 7 — P(X) by

_ A if A= {b, C}(OT){a,’ b, C}
A= { cl(A) Otherwise for every A € 7.

Then YO(X) = {0, X, {a},{b, ¢}, {a,b,c},{b,c,d}}. Hence X is (7, 7)-normal.
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Theorem 4.1. Let X be a topological space. Then the following properties are equivalent:

(i) X is (7, ¥)-normal;

(ii) for each ~y-closed set A and for each y-open set V of A, there exists a y-open set U of A such
that cl3(U) C V;

(iii) for each pair of disjoint y-closed sets A and B in X, there exists a 4-open set U of A such
that cl5(U) N B = ;

(iv) for any pair of disjoint v-closed sets A, B of X, there exists disjoint gy-open sets U, V such
that AC U and B C V;

(v) for any y-closed set A and any v-open set V' containing A, there exists gy-open set U such that

Proof. (i) = (ii). Let X be a (v,%)-normal space and A be any y-closed set and V be any
~-open set of A. Now A and X — V are y-closed in X and A C V implies that AN (X — V) = 0.
Since X is (v,7¥)-normal, there exists y-open set U of A and F-open set W of X — V such that
UNW =0=UCX-W = cd;U) Cecsy(X-W)=X—-W (since X — W is §-closed)
= c5(U)NW = 0. But cl5(U)N(X=V) Ccy(U)NW =0 = cl5s(U)N(X-V) =0 = cl5(U) C V.

(i) = (iii). Let A, B be disjoint y-closed sets in X. Since AN B = () we have A C X — B,
where X — B is y-open. Hence X — B is a vy-open set containing the ~-closed set A. By (ii) there
exists J-open set U of A such that cl5(U) C X — B. Hence cl5(U) N B = 0.

(iii) = (i). Let A, B be disjoint 7-closed sets in X. By (iii), there exists a §-open set U; of
A such that cl3(U;)) N B =0 = B C X —cly(Uy). Take Uy = X — cl5(Ur), then U, is a §-open
set containing the y-closed set B. Also Uy NU; = Uy N(X —cl5(Uy)) = 0. Hence X is (v, )-normal.

(i) = (iv). Follows from the definition of (v, %)-normal and Remark 2.1.

(iv) = (v). Let A be any ~y-closed set and V' a 7-open set containing A. Since A and X — V are
disjoint y-closed sets of X, there exists gy-open sets U and W of X such that ACU, X -V CW
and U N W = 0. Therefore by definition of gj-open, we have that X —V C int5(W). Since
U Ninty(W) = 0, we have that cl5(U) Nint5 (W) = 0 and hence cl5(U) = X — ints(W) C V.
Therefore A CU C cl3(A) C V.

(v) = (i). Let A and B be any disjoint y-closed sets of X. Since X — B is a y-open set con-
taining A and by (v), there exists a gy-open set G such that A C G C ¢l5(G) € X — B. By
the definition of g¥-open, we have that A C int5(G). Put U = int5(G) and V = X — cl5(G).
This implies that U and V are disjoint 4-open sets such that A C U and B C V. Therefore X is
(7,%)-normal.

Theorem 4.2. Let f: X — Y be a mapping. If f is (7, §)-continuous, (7, B)-open7 surjective and
X is (v, %)-normal, then Y is (8, 5)-normal.

Proof. Let A and B be any two disjoint 3-closed sets in Y. Since f is (v, 3)-continuous, f~1(A)
and f~1(B) are disjoint y-closed in X. As X is (v,%)-normal, there exist disjoint J-open sets U
and V of X such that f~'(A) CU and f~'(B) CV and UNV = 0. Since f is (%, B)-open and
surjective we have that f(U) and f(V) are f-open sets in Y such that A C f(U) and B C f(V)
and f(U)N f(V) =0. Hence Y is (8, 8)-normal.

Theorem 4.3. Let f: X — Y be a mapping. If f is (v, 8)-closed and (7, B)—continuous, injective
and Y is (3, 8)-normal, then X is (v, #)-normal.

Proof. Let A and B be any two disjoint y-closed in X. Since f is (v, 8)-closed, f(A) and f(B)
are disjoint [S-closed sets in Y. As Y is (5,3)—normal, there exist disjoint B—open sets U and
V of Y such that f(A) € U and f(B) C V and UNV = §. Since f is (4, )-continuous and
injective we have that f~1(U), f~1(V) are J-open sets in X and A C f~1(U), B C f~%V) and
F~YU)N f~1(V) = 0. Hence X is (v,7)-normal.
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Definition 4.2. A topological space X is said to be (v, #)-regular if for each y-closed set F' of X
and each point x € X — F, there exist disjoint ¥-open sets U, V such that FF C U and x € V.

Example 4.2. Let X = {a,b,c,d}, 7 = {0, X, {a}, {b},{c}, {a, b}, {a,c},{b,c},{a,b,c}, {a,b,d}}
and define an operation v : 7 — P(X) by

Av_{ AU{c} if A= {a,b,d}
T\ A ifA#{abd}

Then :YO(X) = {(Z)v X, {a}v {b}a {C}v {a’ b}’ {aa C}’ {aa d}v {bv C}v {bv d}v {Cv d}v {av b, C}a {av b, d}’
{a,c,d},{b,c,d}}. Hence X is (v, 7)-regular.

for every A € 7.

Theorem 4.4. Let X be a topological space. Then the following properties are equivalent:

(i) X is (7, 7)-regular;

(ii) for each x € X and each 7-open set U of z, there exists a y-open set V of x such that
cl5(V) CU;

(iii) for each ~-closed set F' of X, N{cl5(V): F CV,V € 3O(X)} = F;

(iv) for each A C X and each y-open set U with AN U # (, there exists a §-open set V such that
ANV # 0 and cl5(V) CU;

(v) for each A C X and each ~-closed subset F' of X with AN F = (), there exist V, W € 30(X)
such that ANV # 0, FCW and WNV =)

(vi) for each 7-closed set F and x ¢ F, there exists a -open set G and a gy-open set V such that
r€G FCVand GNV =0;

(vii) for each A C X and each y-closed set F' with AN F = (), there exists a -open set G and a
g¥y-open set V such that ANG # 0, F CV and GNV = {J;

(viil) for each vy-closed set F of X, F' =n{cl5(V): F CV,V € GFO(X)}.

Proof. (i) = (ii). Let © ¢ X — U and U be a y-open set containing x. Then by (i), there
exists G, V € YO(X) such that X —U C G,z € V and GNV = . Therefore V C X — G and
zeVCcey(V)CX-GCU.

(ii) = (iii). Let X — F be a ~y-open set containing x. Then by (ii), there exists a J-open set
G of x such that z € G C ¢l5(G) € X — F. This implies that FF C X —cl5(G) =V, V € 30(X)
and V' NG = (. Then by Remark 2.1, z ¢ ¢l5(V) and hence F D {cl5(V): F CV,V € 30(X)}.

(iii) = (iv). Let U be a y-open set with x € U N A. Then « ¢ X — U and by (iii), there ex-
ists a ¥-open set W such that X —U C W and = & cl5(W). We put V = X — cl5(W), which is
a J-open set containing « and hence VNA # (. Now V' C X —W and so that cl3(V) C X-W C U.

(iv) = (v). Let A C X and F be a 7-closed set in X with ANF = (. Then X — F is -
open and (X — F)N A # (. Then by (iv), there exists V € O(X) such that ANV # @ and
cls(V) C X — F. If we put W = X — cl5(V), then W € 50(X), F C W and W NV = 0.

(v) = (i). Let F be a ~y-closed set not containing z. Then by (v), there exist V, W € 30(X) such
that FC W and x € Vand WNV = 0.

(i) = (vi). Follows from the definition of (v,#)-regular and by Remark 2.2.

(vi) = (vii). Let A C X and F be ay-closed set in X with ANF =0. Fora€ A,a ¢ X—A=a ¢ F
and hence by (vi), there exists G € YO(X) and a g¥-open set V such that « € G, FF C V and
GNV =0. Hence ANG # 0.

(vii) = (i). Let « ¢ F, where F is v-closed. Since {z} N F = (0, by (vii), there exists G € YO(X)
and a gy-open set W such that « € G, F C W and GNW = (. Now put V = int5(W). By
definition of g¥-open sets, we get F CV and VNG = (.

(iii) = (viil)). We have that FF C n{cl5(V) : F C V.V € GFO(X)} C N{cl3(V) : F C V,V €
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(viii) = (i). Let F be a 7-closed set in X not containing z. Then by (viii), there exists a
gy-open set V such that FF C V and z € X — int5(V). Since F is y-closed and V is gy-open,
F Cintz(V). Take W =int5(V). Then FC W,z € G=X —cl5(W) and GNW = 0.

Theorem 4.5. f: X — Y be a mapping. If f is (v, 3)-continuous, (¥, 3)-open, surjective and X
is (,4)-regular, then Y is (3, 8)-regular.

Proof. Let y € Y and F be any -closed in Y with y ¢ F. Since f is (v, 3)-continuous, f~!(F)
is y-closed in X. Since f is surjective, let f(x) = y, then z = f~(y) = = ¢ f~*(F). Since
X is (v,7)-regular there exists ¥-open sets U and V in X such that x € U and f~%(F) C V
and UNV = 0. As [ is (%B)—open, f(U) and f(V) are B-open in Y. Since f is surjective,
fO)Nf(V)=f(UNV)=0. Hence Y is (B, 3)-regular.

Theorem 4.6. Let f: X — Y be a mapping. If f is (v, 3)-closed and (%, B)-continuous, injective
and Y is (3, 8)-regular, then X is (v, 7)-regular.

Proof. Let F' be any v-closed in X with 2 € X and ¢ F. Since f is (v, )-closed, f(F)
is f-closed in Y, f(z) € YV and f(z) € f(F). Since Y is (3, [)-regular there exists S-open
sets U and V in Y such that f(z) € U and f(F) CVand UNV =0 = x € f~}U) and
F C f~Y(V). As fis (3, B)-continuous, f~*(U) and f~(V) are -open in X. Since f is injective,
FFHOYN fY(V) = f~YUNV) =0. Hence X is (v,7)-regular.
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