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Abstract

In this paper, we create a new type of separation spaces γ̃-R0 and γ̃-R1 through γ̃-open
sets and study some of their characterizations and relationships between γ̃-T0, γ̃-T1 and γ̃-T2

spaces. Also, we introduce (γ, γ̃)-normal and (γ, γ̃)-regular spaces and study their important
properties through operation mappings.
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1 Introduction

Kasahara[14] introduced the concept of operation topology, subsequently Jankovic[10] developed
the operation-closed graphs. Ogata[20, 21] defined γ-operation on a topology and investigated
the relationships between γ-closure and τγ-closure operators and obtained the concept of γ-Ti

(i = 0, 1
2 , 1, 2) spaces through γ-closed and γ-open sets. Umehara et.al.[36] and Ogata[22] dis-

cussed the bioperation concept in operation topology with some separation axioms. Levine[16]
defined the notion of generalized closed set in topology and Maki et.al.[18] created a γg-closed set
in operation topology. Dunham[9] introduced T 1

2
spaces and Levine[15] defined a semi-open set

in topology. Sai Sundara Krishnan et.al.[23] modified the concept of semi-open as γ-semi-open
in operation topology and studied the γ-semi-separation axioms. Saravanakumar et.al.[24, 29, 32]
initiated a γ̃-open set (resp. γ∗-pre-open) set in operation topology and µ̃-open set in general topol-
ogy and studied γ̃-Ti (resp. γ

∗-pre-Ti, µ̃-Ti), (i = 0, 1
2 , 1, 2) spaces using through the γ̃-open (resp.

γ∗-pre-open, µ̃-open) and γ̃-closed (resp. γ∗-pre-closed, µ̃-closed) sets. Saravankumar et.al.[25, 27,
30, 32, 33, 34, 35] created various types of operation continuous mappings in operation topology
as well as generalized continuous in general topology and discussed some important properties. In
[1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 31, 32, 34, 36, 37], they
introduced new type of separation axioms such as κ-Ti (i = 0, 1

2 , 1, 2), κ-Rj (j = 0, 1), κ-normal
and κ-regular spaces (here ”κ” stands for semi, pre, ∧θ, µ, γ, γ

∗-pre, γ̃ etc.) in the fields of general
topology, generalized topology, operation topology and discussed some of their relationships and
properties.

In this paper, we introduced new notion of operation separation axioms γ̃-R0 and γ̃-R1 spaces and
obtained that every γ̃-R1 space is γ̃-R0, but the converse need not be true. Also, we investigated
their relationships between γ̃-T0, γ̃-T1 and γ̃-T2 spaces and studied some of their important prop-
erties. Moreover, we defined the concepts of (γ, γ̃)-normal and (γ, γ̃)-regular spaces and discussed
the characterizations through γ̃-open and γ̃-closed sets. In addition, we proved that topological
space X is (γ, γ̃)-normal (resp. (γ, γ̃)-regular) if f : X → Y is a (γ, β)-closed and (γ̃, β̃)-continuous,
injective mapping and Y is a (β, β̃)-normal (resp. (β, β̃)-regular) space.

2 Preliminaries

Throughout this paper, we consider the topological spaces (X, τ) and (Y , σ) by X and Y resp.
An operation γ[20] on the topology τ is a mapping from τ into the power set P (X) of X such
that V ⊆ V γ for each V ∈ τ , where V γ denotes the value of γ at V . Similarly, an operation
β on the topology σ is a mapping from σ into the power set P (Y ) of Y such that W ⊆ W β

for each W ∈ σ, where W β denotes the value of β at W . A subset A of X is γ-open[20], if
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for each x ∈ A, there exist an open neighborhood U such that x ∈ U and Uγ ⊆ A. Its com-
plement is called γ-closed and τγ [20] denotes set of all γ-open sets in X. For a subset A of X,
γ-interior[20] of A is intγ(A) = {x ∈ A : x ∈ N ∈ τ and Nγ ⊆ A for some N}; γ-closure[20] of A is
clγ(A) = {x ∈ X : x ∈ U ∈ τ and Uγ∩A ̸= ∅ for all U}; τγ-int(A)[20] = ∪{G : G ⊆ A and G ∈ τγ};
τγ-cl(A)[20] = ∩{F : A ⊆ F and X \ F ∈ τγ}. A subset A of X is γg-closed[20] if clγ(A) ⊆ U
whenever A ⊆ U and U is γ-open in X. For a subset A of X, cl∗γ(A)[18] denotes the intersection of
all γg-closed sets containing A, that is the smallest γg-closed set containing A; int∗γ(A)[18] denotes
the union of all γg-open sets contained in A, that is the largest γg-open set contained in A. If A
is a subset of X and x ∈ X, then (i) x ∈ cl∗γ(A)[18] if and only if M ∩A ̸= ∅ for each γg-open set
M containing x; (ii) cl∗γ(X \A)[18] = X \ int∗γ(A) and (iii) cl∗γ(cl

∗
γ(A))[18] = cl∗γ(A). A subset A of

X is γ-semi-open[23] if A ⊆ τγcl(τγint(A)) and γSO(X)[23] denotes the family of all γ-semi-open
sets in X. A subset A of X is said to be a γ̃-open set[32], if there exists a set U ∈ τγ such that
U ⊆ A ⊆ cl∗γ(U). Its complement is called γ̃-closed. The family of all γ̃-open sets is denoted by
γ̃O(X). For A ⊆ X, γ̃-interior of A[32] is intγ̃(A) = ∪{U : U ∈ γ̃O(X) and U ⊆ A} and γ̃-closure
of A[32] is clγ̃(A) = ∩{F : X−F ∈ γ̃O(X) and A ⊆ F}. A subset A of X is said to be γ̃g-closed[32]
if clγ̃(A) ⊆ U whenever A ⊆ U and U is γ̃-open in X. A subset A of X is said to be γ̃g-open[32]
if F ⊆ intγ̃(A) whenever F ⊆ A and F is γ̃-closed in X. The family of all γ̃g-open sets is denoted
by γ̃GO(X). A space X is said to be (i) γ̃-T0[32] if for each pair of distinct points x, y ∈ X, there
exists a γ̃-open set U such that x ∈ U and y /∈ U or y ∈ U and x /∈ U ; (ii) γ̃-T1[32] if for each
pair of distinct points x, y ∈ X, there exists a γ̃-open sets U and V contain x and y respectively
such that y /∈ U and x /∈ V ; (iii) γ̃-T2[32] if for each pair of distinct points x, y ∈ X, there exists a
γ̃-open sets U and V such that x ∈ U and y ∈ V and U ∩ V = ∅. A mapping f : X → Y is said
to be (γ, β)-open[20] (resp. (γ, β)-closed[20]) if for each γ-open set U (resp. γ-closed) of X, f(U)
is β-open (resp. β-closed) in Y . A mapping f : X → Y is said to be (γ, β)-continuous[20] (resp.
(γ̃, β̃)-continuous[32]) if for any β-open V (resp. β̃-open) of Y , f−1(V ) is γ-open (resp. γ̃-open)
in X.

Definition 2.1. For a subset A of X, kerγ̃(A) = ∩{U : U ∈ γ̃O(X) and A ⊆ U} is called γ̃-kernel
of A.

Definition 2.2. A subset A of a topological space X is said to be gγ̃-closed if clγ̃(A) ⊆ U when-
ever A ⊆ U and U is γ-open in X. A subset A of a topological space X is said to be gγ̃-open if
F ⊆ intγ̃(A) whenever F ⊆ A and F is γ-closed in X. The family of all gγ̃-open sets is denoted
by Gγ̃O(X).

Definition 2.3. A mapping f : X → Y is said to be (γ̃, β̃)-open, (resp. (γ̃, β̃)-closed if for each
γ̃-open set U (resp. γ̃-closed) of X, f(U) is β̃-open (resp. β̃-closed) in Y .

Remark 2.1[32]. Let X be a topological space. Then for a point x ∈ X, x ∈ clγ̃(A) if and only
if V ∩A ̸= ∅ for any V ∈ γ̃O(X) such that x ∈ V .

Remark 2.2 Let X be a topological space. If A is a γ̃-open set in X, then A is gγ̃-open in X.

Lemma 2.1. The following properties hold for subsets A, B of a topological space X:
(i) x ∈ kerγ̃(A) if and only if A ∩ F ̸= ∅ for any γ̃-closed set F of X containing x;
(ii) A ⊆ kerγ̃(A) and A = kerγ̃(A) if A is γ̃-open in X;
(iii) if A ⊆ B, then kerγ̃(A) ⊆ kerγ̃(B).

Proof. Follows from the Definition 2.1.

Lemma 2.2. For A ⊆ X, kerγ̃(A) = {x ∈ X : clγ̃({x}) ∩A ̸= ∅}.

Proof. Let x ∈ kerγ̃(A). If clγ̃({x}) ∩ A = ∅, then x /∈ X − clγ̃({x}), which is a γ̃-open set
containing A. Thus x /∈ kerγ̃(A), a contradiction. Hence clγ̃({x}) ∩ A ̸= ∅. Conversely, let x ∈ X
be such that clγ̃({x}) ∩ A ̸= ∅. If possible, let x /∈ kerγ̃(A). Then there exists U ∈ γ̃O(X) such
that x /∈ U and A ⊆ U . Let y ∈ clγ̃({x}) ∩A. Then y ∈ clγ̃({x}) and y ∈ U , which gives x ∈ U , a
contradiction. Hence x ∈ kerγ̃(A).
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3 γ̃-Ri spaces

Definition 3.1. A topological space X is said to be γ̃-R0 if for each γ̃-open set U, x ∈ U implies
that clγ̃({x}) ⊆ U

Example 3.1. Let X = {a, b, c}, τ = {∅, X, {a}, {c}, {a, c}, {b, c}} and define an operation γ :
τ → P (X) by

Aγ =

{
A ∪ {a} if A = {c}
cl(A) if A ̸= {c} for every A ∈ τ .

Then γ̃O(X) = {∅, X, {a}, {b, c}}. Hence X is γ̃-R0.

Theorem 3.1. Let X be a topological space and x, y ∈ X. Then y ∈ kerγ̃({x}) if and only if
x ∈ clγ̃({y})

Proof. Let y ∈ kerγ̃({x}). If x /∈ clγ̃({y}), then x /∈ ∩{F : X −F ∈ γ̃O(X) and {y} ⊆ F} implies
that x ∈ X −F and y /∈ X −F . Therefore y /∈ ∩{X −F : X −F ∈ γ̃O(X) and {x} ⊆ X −F} and
hence y /∈ kerγ̃({x}), which is a contradiction. Thus x ∈ clγ̃({y}). Conversely, let x ∈ clγ̃({y}). If
y /∈ kerγ̃({x}), then y /∈ ∩{U : U ∈ γ̃O(X) and {x} ⊆ U} implies that y ∈ X −U and x /∈ X −U .
Therefore x /∈ ∩{X − U : U ∈ γ̃O(X) and {y} ⊆ X − U} and hence x /∈ clγ̃({y}), a contradiction.
Thus y ∈ kerγ̃({x}).

Theorem 3.2. In a topological space X, the following statements are equivalent:
(i) X is γ̃-R0;
(ii) for each γ̃-closed set F and a point x /∈ F , there exists a G ∈ γ̃O(X) such that x /∈ G and

F ⊆ G;
(iii) for each γ̃-closed set F and x /∈ F , clγ̃({x}) ∩ F = ∅.

Proof. (i) ⇒ (ii). Let F be γ̃-closed and x /∈ F . Then X − F is γ̃-open and x ∈ X − F . By
(i) clγ̃({x}) ⊆ X − F , X − F is γ̃-open and x ∈ X − F . Let G = X − clγ̃({x}) is γ̃-open. Since
x ∈ clγ̃({x}) ⇒ x /∈ X − clγ̃({x}) ⇒ x /∈ G.

(ii) ⇒ (iii). Let F be a γ̃-closed set and x /∈ F . Then by (ii), there exists a γ̃-open set G, x /∈ G
and F ⊆ G. Thus x ∈ X −G ⊆ X − F . Hence X −G is γ̃-closed containing x and we have that
clγ̃({x}) ∩ (X − G) ̸= ∅ implies that clγ̃({x}) ⊆ X − G. Therefore G ∩ clγ̃({x}) = ∅ and hence
F ∩ clγ̃({x}) = ∅.

(iii) ⇒ (i). Let F is γ̃-closed x /∈ F , clγ̃({x})∩F = ∅. Let U be γ̃-open and x ∈ U . Then X−U is γ̃-
closed and x /∈ X−U . By (iii), clγ̃({x})∩(X−U) = ∅ implies that clγ̃({x}) ⊆ U . Hence X is γ̃-R0.

Theorem 3.3. A topological space X is γ̃-R0 if and only if for each pair of x, y ∈ X and x ̸= y,
clγ̃({x}) ∩ clγ̃({y}) = ∅ (or) {x, y} ⊆ clγ̃({x}) ∩ clγ̃({y}).

Proof. Let X be a γ̃-R0 space. If clγ̃({x})∩ clγ̃({y}) ̸= ∅ ⇒ {x, y} ⊆ clγ̃({x})∩clγ̃({y}). Suppose
{x, y} * clγ̃({x}) ∩ clγ̃({y}). Let z ∈ clγ̃({x}) ∩ clγ̃({y}) and x /∈ clγ̃({x}) ∩ clγ̃({y}). Then
x /∈ clγ̃({y}) which implies that x ∈ X − clγ̃({y}). Let x ∈ U,U = X − clγ̃({y}) and U is γ̃-open.
But if z ∈ clγ̃({x}) then z ∈ clγ̃({y}) and z /∈ X − clγ̃({y}), z /∈ U . (ie) clγ̃({x}) * U which is a
contradiction to γ̃-R0 space. Conversely let clγ̃({x})∩ clγ̃({y}) = ∅ or {x, y} ⊆ clγ̃({x})∩ clγ̃({y})
and let U be a γ̃-open such that x ∈ U . Suppose clγ̃({x}) * U then there exists a element
y ∈ clγ̃({x}) and y /∈ U and clγ̃({y}) ∩ U = ∅. Since X − U is γ̃-closed and y ∈ (X − U). Thus
{x, y} * clγ̃({x}) ∩ clγ̃({y}) and so clγ̃({x}) ∩ clγ̃({y}) ̸= ∅, which is a contradiction. Hence X is
γ̃-R0.

Theorem 3.4. In a topological space X, the following statements are equivalent.
(i) X is γ̃-R0;
(ii) for each x ∈ X, clγ̃({x}) ⊆ kerγ̃({x});
(iii) for each x, y ∈ X and y ∈ kerγ̃({x}) if and only if x ∈ kerγ̃({y});
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(iv) for each x, y ∈ X and y ∈ clγ̃({x}) if and only if x ∈ clγ̃({y});
(v) for each γ̃-closed set F and a point x /∈ F , there exists a U ∈ γ̃O(X) and F ⊆ U ;
(vi) for each γ̃-closed set F can be expressed as F = ∩{U : U ∈ γ̃O(X) and F ⊆ U};
(vii) for each γ̃-open set U,U = ∪{F : X − F ∈ γ̃O(X) and F ⊆ U};
(viii) for each γ̃-closed set F, x /∈ F implies clγ̃({x}) ∩ F = ∅.

Proof. (i) ⇒ (ii). By Definition 3.1, kerγ̃({x} = ∩{U : U ∈ γ̃O(X) and {x} ⊆ U}}. Then by (i),
each γ̃-open set U containing x and contains clγ̃({x}).

(ii) ⇒ (iii). For any x, y ∈ X, if y ∈ kerγ̃({x}, then by Theorem 3.1, x ∈ clγ̃({y}). By (ii),
x ∈ kerγ̃({y}). Conversely, if x ∈ kerγ̃({y}), then by Theorem 3.1 ,y ∈ clγ̃({x}). By (ii)
y ∈ kerγ̃({x}).

(iii) ⇒ (iv). For any x, y ∈ X, if y ∈ clγ̃({x}), by Theorem 3.1, x ∈ kerγ̃({y}). By (iii)
y ∈ kerγ̃({x}). By Theorem 3.1, x ∈ clγ̃({y}). The converse part is similar.

(iv) ⇒ (v). Let F be a γ̃-closed set and a point x /∈ F . Then for any y ∈ F , clγ̃({x}) ⊆ F and so
x /∈ clγ̃({y}). By (iv) if x /∈ clγ̃({y}) then y /∈ clγ̃({x}), implies that there exists a γ̃-open set Uy

such that y ∈ Uy and x /∈ Uy. Let U = ∪y∈F {Uy : Uy ∈ γ̃O(X), y ∈ Uy and x /∈ Uy }. Then by
Theorem 3.4[6], U is γ̃-open such that x /∈ U and F ⊆ U .

(v) ⇒ (vi). Let F be γ̃-closed set and H = ∩{U : U ∈ γ̃O(X) and F ⊆ U}. Clearly F ⊆ H. Let
x ∈ H. Suppose x /∈ F . By (v) there exists a γ̃-open set U such that x /∈ U and F ⊆ U , and hence
x /∈ H. Therefore, each γ̃-closed set F can be expressed as F = ∩{U : U ∈ γ̃O(X) and F ⊆ U}.

(vi) ⇒ (vii). It is trivially true as U = ∪{F : X − F is γ̃-open and F ⊆ U}.

(vii) ⇒ (viii). Let F be a γ̃-closed set and x /∈ F . Then X − F = U , is a γ̃-open set con-
taining x. By (vii) we have U can be written as the union of γ̃-closed sets and so there is a
γ̃-closed set H such that x ∈ H ⊆ U and hence clγ̃({x}) ⊆ U . Thus clγ̃({x}) ∩ F = ∅.

(viii) ⇒ (i). Let U be a γ̃-open set and x ∈ U . Then by (viii) there exists a γ̃-closed set F such
that x ∈ F ⊆ U and clγ̃({x}) ∩ F ̸= ∅. Therefore clγ̃({x}) ⊆ F and hence clγ̃({x}) ⊆ U . Thus X
is γ̃-R0 space.

Theorem 3.5. For any two points x, y ∈ X in a γ̃-R0 space we have either clγ̃({x})∩clγ̃({y}) = ∅
(or) clγ̃({x}) = clγ̃({y}).

Proof. Let X be a γ̃-R0 space. Suppose clγ̃({x}) ̸= clγ̃({y}) and clγ̃({x}) ∩ clγ̃({y}) ̸= ∅.
Let s ∈ clγ̃({x}) ∩ clγ̃({y}) and x /∈ clγ̃({y}). Then x ∈ X − clγ̃({y}), is γ̃-open in X. But
clγ̃({x}) * X − clγ̃({y}), since s ∈ clγ̃({x}) ∩ clγ̃({y}), which is a contradiction to the hypothesis
that X is γ̃-R0. Hence we have that either clγ̃({x}) ∩ clγ̃({y}) = ∅ (or) clγ̃({x}) = clγ̃({y}).

Remark 3.1. The converse of the above theorem need not be true, in general.

Let X = {a, b, c, d}, τ = {∅, X, {a}, {d}, {a, d}, {b, c}, {a, b, c}, {b, c, d}} and define an operation
γ : τ → P (X) by

Aγ =

{
A if A = {b, c}

A ∪ {b, d} if A ̸= {b, c} for every A ∈ τ .

Then γ̃O(X) = {∅, X, {b, c}, {a, b, c}, {b, c, d}} and satisfies the condition: for any two points
x, y ∈ X, we have either clγ̃({x}) ∩ clγ̃({y}) = ∅ (or) clγ̃({x}) = clγ̃({y}). But X is not γ̃-
R0.

Theorem 3.6. For any two points x and y in a topological space X, the following statements are
equivalent:
(i) kerγ̃({x}) ̸= kerγ̃({y});
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(ii) clγ̃({x}) ̸= clγ̃({y}).

Proof. (i) ⇒ (ii). Let kerγ̃({x}) ̸= kerγ̃({y}). Then there exists z ∈ kerγ̃({x}) such that
z /∈ kerγ̃({y}). By Theorem 3.1, x ∈ clγ̃({z}) and y /∈ clγ̃({z}). As clγ̃({x}) ⊆ clγ̃({z}) we have
y /∈ clγ̃({x}). Hence clγ̃({x}) ̸= clγ̃({y}).

(ii) ⇒ (i). Let clγ̃({x}) ̸= clγ̃({y}). Then there exists z ∈ X such that z ∈ clγ̃({x}) and
z /∈ clγ̃({y}), which implies that there exists a γ̃-open set U such that z ∈ U , y /∈ U and x ∈ U
implies that y /∈ kerγ̃({x}). Hence kerγ̃({x}) ̸= kerγ̃({y}).

Theorem 3.7. Let X be a γ̃-R0 space. Then for any two distinct points x, y ∈ X, kerγ̃({x}) ̸=
kerγ̃({y}) implies kerγ̃({x}) ∩ kerγ̃({y}) = ∅.

Proof. Let X be a γ̃-R0 space and kerγ̃({x}) ̸= kerγ̃({y}) where x, y ∈ X. Suppose that
kerγ̃({x})∩kerγ̃({y}) ̸= ∅. Let s ∈ kerγ̃({x})∩kerγ̃({y}). Then s ∈ kerγ̃({x}) and s ∈ kerγ̃({y}).
By Theorem 3.4.(iii), we have that x ∈ kerγ̃({s}) and y ∈ kerγ̃({s}). Hence kerγ̃({x}) ⊆
kerγ̃({s}) ⊆ kerγ̃({y}) and we have kerγ̃({y}) ⊆ kerγ̃({s}) ⊆ kerγ̃({x}) implies that kerγ̃({x}) =
kerγ̃({y}), which is a contradiction. Hence kerγ̃({x}) ∩ kerγ̃({y}) = ∅.

Corollary 3.1. For any pair of points x and y in a topological space X, the following statements
are equivalent:
(i) X is γ̃-R0 space;
(ii) for each γ̃-closed set F ⊆ X,F = kerγ̃(F );
(iii) for each γ̃-closed set F ⊆ X and x ∈ F , kerγ̃({x}) ⊆ F ;
(iv) for each x ∈ X, kerγ̃({x}) ⊆ clγ̃({x}).

Proof. (i) ⇒ (ii). Let F be a γ̃-closed set and x /∈ F . Then X − F is γ̃-open and x ∈ X − F .
Since X is γ̃-R0, clγ̃({x}) ⊆ X − F . Therefore clγ̃({x}) ∩ F = ∅ and by Lemma 3.2, x /∈ kerγ̃(F ).
Hence kerγ̃(F ) ⊆ F . By Definition 3.1, F ⊆ kerγ̃(F ). Thus F = kerγ̃(F ).

(ii) ⇒ (iii). Let F be a γ̃-closed set and x ∈ F . Then {x} ⊆ F and kerγ̃({x}) ⊆ kerγ̃(F ). By (ii),
we have that kerγ̃({x}) ⊆ F .

(iii) ⇒ (iv). Since x ∈ clγ̃({x}) and clγ̃({x}) is a γ̃-closed set in X. Then by (iii), kerγ̃({x}) ⊆
clγ̃({x}).

(iv) ⇒ (i). Let x ∈ clγ̃({y}). Then by Theorem 3.1, y ∈ kerγ̃({x}). By (iv) y ∈ clγ̃({x}). Similarly
we can prove if y ∈ clγ̃({x}) then x ∈ kerγ̃({y} which implies x ∈ clγ̃({y}). Then by Theorem
3.4.(iv), X is γ̃-R0 space.

Theorem 3.8. In a topological space X, the following statements are equivalent:
(i) X is γ̃-T1;
(ii) clγ̃({x}) = {x}, for all x ∈ X;
(iii) X is γ̃-R0 and γ̃-T0.

Proof. (i) ⇒ (ii). Since {x} ⊆ clγ̃({x}). If y /∈ {x}, then there exists a γ̃-open set U such that
y ∈ U , x /∈ U . Therefore U ∩ {x} = ∅ and hence y /∈ clγ̃({x}).

(ii) ⇒ (iii). Let x, y ∈ X with x ̸= y. Then {x} and {y} are γ̃-closed sets and hence X − {x}
is γ̃-open set containing y but not x which implies X is γ̃-T0. Suppose that U is γ̃-open set and
x ∈ U . Then by (ii), clγ̃({x}) = {x} ⊆ U . Hence X is γ̃-R0.

(iii) ⇒ (i). Let x, y ∈ X with x ̸= y. Then there exits γ̃-open set U such that x ∈ U and y /∈ U
(say) which implies that clγ̃({x}) ⊆ U and so y /∈ clγ̃({x}). Hence x ∈ U , U is γ̃-open, y /∈ U and
y ∈ X − clγ̃({x}), which is γ̃-open, x /∈ X − clγ̃({y}). Hence X is γ̃-T1.
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Definition 3.2. A topological space X is said to be γ̃-R1 if for each x, y ∈ X, clγ̃({x}) ̸= clγ̃({y}),
there exists γ̃-open sets U, V such that clγ̃({x}) ⊆ U and clγ̃({y}) ⊆ V and U ∩ V = ∅.

Example 3.2. Let X = {a, b, c, d}, τ = P (X) and define an operation γ : τ → P (X) by

Aγ =

 A ∪ {c, d} if A = {a}(or){b}
A ∪ {a, b} if A = {c}(or){d}

A Otherwise
for every A ∈ τ .

Then γ̃O(X) = {∅, X, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}}.
Hence X is γ̃-R1.

Theorem 3.9. If X is γ̃-R1, then it is γ̃-R0.

Proof. Let U be a γ̃-open set and x ∈ U . If y /∈ U , since x /∈ clγ̃({y}), we have that
clγ̃({x}) ̸= clγ̃({y}). So there exists a γ̃-open set V such that clγ̃({y}) ⊆ V and x /∈ V , which
implies that y /∈ clγ̃({x}). Hence clγ̃({x}) ⊆ U . Hence X is γ̃-R0.

Remark 3.2. The converse of the above Theorem 3.9 need not be true in general.

Let X = {a, b, c, d}, τ = P (X) and define an operation γ : τ → P (X) by

Aγ =

{
A if A = {a, b}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}
X Otherwise

for every A ∈ τ .

Then γ̃O(X) = {∅, X, {a, b}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}}. Hence X is γ̃-R0 but not
γ̃-R1.

Theorem 3.10. In a topological space X, the following statements are equivalent:
(i) X is γ̃-T2;
(ii) X is γ̃-R1 and γ̃-T1;
(iii) X is γ̃-R1 and γ̃-T0.

Proof. (i) ⇒ (ii). Let X be a γ̃-T2 space. Then X is clearly γ̃-T1. Now if x, y ∈ X with
clγ̃({x}) ̸= clγ̃({y}) then there exists γ̃-open sets U and V such that x ∈ U , y ∈ V and U ∩V = ∅.
Hence by Theorem 3.8 clγ̃({x}) = {x} ⊆ U and clγ̃({y}) = {y} ⊆ V and U ∩ V = ∅. Then X is
γ̃-R1.

(ii) ⇒ (iii). It is trivially true.

(iii) ⇒ (i). Let X be γ̃-R1 and γ̃-T0. By Theorem 3.9, X is γ̃-R1 ⇒ X is γ̃-R0. By Theorem 3.8, X
is γ̃-R0 and γ̃-T0 ⇒ X is γ̃-T1. Let x, y ∈ X with x ̸= y. Then clγ̃({x}) = {x} ≠ {y} = clγ̃({y}).
As X is γ̃-R1, there exists γ̃-open sets U, V such that clγ̃({x}) = {x} ⊆ U , clγ̃({y}) = {y} ⊆ V
and U ∩ V = ∅. Thus X is γ̃-T2.

Theorem 3.11. In a topological space X, the following statements are equivalent:
(i) X is γ̃-R1;
(ii) for any x, y ∈ X one of the following holds:

(a) for γ̃-open set U, x ∈ U if and only if y ∈ U ;
(b) there exists γ̃-open sets U and V such that x ∈ U , y ∈ V and U ∩ V = ∅.

(iii) if x, y ∈ X such that clγ̃({x}) ̸= clγ̃({y}), then there exists γ̃-closed sets F1 and F2 such that
x ∈ F1, y /∈ F1, y ∈ F2, x /∈ F2 and X = F1 ∪ F2.

Proof. (i) ⇒ (ii). Let x, y ∈ X. Then clγ̃({x}) = clγ̃({y}) (or) clγ̃({x}) ̸= clγ̃({y}). Suppose
clγ̃({x}) = clγ̃({y}) and U , γ̃-open set. Then x ∈ U implies that y ∈ clγ̃({y}) = clγ̃({x}) ⊆ U .
Hence y ∈ U . Similarly, we can prove if y ∈ U then x ∈ U . Suppose clγ̃({x}) ̸= clγ̃({y}). Then
there exist γ̃-open sets U, V such that x ∈ clγ̃({x}) ⊆ U and y ∈ clγ̃({y}) ⊆ V and U ∩ V = ∅.
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(ii) ⇒ (iii). Let x, y ∈ X such that clγ̃({x}) ̸= clγ̃({y}). Then x /∈ clγ̃({y}), so that there exist a
γ̃-open set G such that x ∈ G and y /∈ G. Thus by (ii), there exists γ̃-open sets U and V such that
x ∈ U and y ∈ V and U ∩ V = ∅. Put F1 = X − V and F2 = X −U . Then F1 and F2 are γ̃-closed
sets and x ∈ F1, y /∈ F1, y ∈ F2, x /∈ F2 and X = F1 ∪ F2.

(iii) ⇒ (i). Let U be γ̃-open set and x ∈ U . Then clγ̃({x}) ⊆ U . In fact, otherwise there ex-
ists y ∈ clγ̃({x}) ∩ (X − U). Then clγ̃({x}) ̸= clγ̃({y}) and so by (iii), there exists F1 and F2

which are γ̃-closed sets such that x ∈ F1, y /∈ F1, y ∈ F2 , x /∈ F2 and X = F1 ∪ F2. Then
y ∈ F2 − F1 = X − F1 and x /∈ X − F1, where X − F1, γ̃-open set which is a contradiction to the
fact that y ∈ clγ̃({x}). Hence clγ̃({x}) ⊆ U . Thus X is γ̃-R0. To show X is γ̃-R1 assume that
a, b ∈ X with clγ̃({a}) ̸= clγ̃({b}). Then there exists γ̃-closed sets P1 and P2 such that x ∈ P1,
y /∈ P1, y ∈ P2, x /∈ P2 and X = P1 ∪ P2. Thus a ∈ P1 − P2 ∈ γ̃O(X), b ∈ P2 − P1 ∈ γ̃O(X). So
clγ̃({a}) ⊆ P1 − P2 and clγ̃({b}) ⊆ P2 − P1. Thus X is γ̃-R1.

Theorem 3.12. (i) A topological space X is γ̃-T2 if and only if for x, y ∈ X with x ̸= y there
exists γ̃-closed sets F1 and F2 such that x ∈ F1, y /∈ F1 , y ∈ F2 , x /∈ F2 and X = F1 ∪ F2.
(ii) A topological space X is γ̃-R1 if and only if x, y ∈ X, with kerγ̃({x}) ̸= kerγ̃({y}, there exists
γ̃-open sets U, V such that clγ̃({x}) ⊆ U and clγ̃({y}) ⊆ V and U ∩ V = ∅.

Proof. (i) Follows from Theorems 3.10 and 3.11.
(ii) Follows from Theorem 3.6 and Definition 3.2.

Definition 3.3 Let X be a topological space. Then a net {xα}α∈J in X is said to γ̃-converge to
a point x in X if the net is eventually in every γ̃-open set containing x.

Lemma 3.1 Let x, y be two points in a topological space X. If every net in X which γ̃-converges
to y also γ̃-converges to x, then x ∈ clγ̃({y}).

Proof. Let us consider the net xn = y for each n ∈ N(N - natural numbers). Clearly the net
γ̃-converges to y and hence γ̃-converges to x. Thus if U is γ̃-open set with x ∈ U , then {xn}n∈N

is eventually in U ⇒ y ∈ U Thus x ∈ clγ̃({y}).

Theorem 3.13. Let X be a topological space. Then X is γ̃-R0 if and only if for every x, y ∈ X,
y ∈ clγ̃({y}) ⇔ every net in X is γ̃-converging to y also γ̃-converges to x.

Proof. Let X be γ̃-R0. Suppose y ∈ clγ̃({x}). To prove every net in X is γ̃-converging to y also
γ̃-converges to x. y ∈ clγ̃({y}) for some x, y ∈ X and let {xα}α∈J be a net in X is γ̃-converging
to y. Since y ∈ clγ̃({x}), clγ̃({x}) = clγ̃({y}). Let U be γ̃-open set such that x ∈ U . Then y ∈ U
and hence there exists α0 ∈ J such that if α ≥ α0 then xα ∈ U . Thus {xα}α∈J γ̃-converges to x.
On the other hand, suppose that every net in X is γ̃-converging to y, γ̃-converges to x. By lemma
3.1, x ∈ clγ̃({y}). By Theorem 3.5. clγ̃({x}) = clγ̃({y}) and hence y ∈ clγ̃({x}). Conversely, to
prove X to be γ̃-R0, let U be γ̃-open set and x ∈ U . Let y ∈ X − U . For each n ∈ N , let xn = y.
Then the net {xn}n∈N γ̃-converges to y, but {xn} is not γ̃-convergent to x. Thus y /∈ clγ̃({x}).
Hence clγ̃({x}) ⊆ U .

4 (γ, γ̃)-normal space and (γ, γ̃)-regular space

Definition 4.1. A topological space X is said to be (γ, γ̃)-normal if for any pair of disjoint γ-closed
sets A, B of X, there exists disjoint γ̃-open sets U , V of X such that A ⊆ U and B ⊆ V .

Example 4.1. Let X = {a, b, c, d}, τ = {∅, X, {a}, {b}, {a, b}, {b, c}, {a, b, c}, {b, c, d}} and define
an operation γ : τ → P (X) by

Aγ =

{
A if A = {b, c}(or){a, b, c}

cl(A) Otherwise
for every A ∈ τ .

Then γ̃O(X) = {∅, X, {a}, {b, c}, {a, b, c}, {b, c, d}}. Hence X is (γ, γ̃)-normal.
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Theorem 4.1. Let X be a topological space. Then the following properties are equivalent:
(i) X is (γ, γ̃)-normal;
(ii) for each γ-closed set A and for each γ-open set V of A, there exists a γ̃-open set U of A such

that clγ̃(U) ⊆ V ;
(iii) for each pair of disjoint γ-closed sets A and B in X, there exists a γ̃-open set U of A such

that clγ̃(U) ∩B = ∅;
(iv) for any pair of disjoint γ-closed sets A, B of X, there exists disjoint gγ̃-open sets U , V such

that A ⊆ U and B ⊆ V ;
(v) for any γ-closed set A and any γ-open set V containing A, there exists gγ̃-open set U such that

A ⊆ U ⊆ clγ̃(U) ⊆ V .

Proof. (i) ⇒ (ii). Let X be a (γ, γ̃)-normal space and A be any γ-closed set and V be any
γ-open set of A. Now A and X − V are γ-closed in X and A ⊆ V implies that A ∩ (X − V ) = ∅.
Since X is (γ, γ̃)-normal, there exists γ̃-open set U of A and γ̃-open set W of X − V such that
U ∩ W = ∅ ⇒ U ⊆ X − W ⇒ clγ̃(U) ⊆ clγ̃(X − W ) = X − W (since X − W is γ̃-closed)
⇒ clγ̃(U)∩W = ∅. But clγ̃(U)∩(X−V ) ⊆ clγ̃(U)∩W = ∅ ⇒ clγ̃(U)∩(X−V ) = ∅ ⇒ clγ̃(U) ⊆ V .

(ii) ⇒ (iii). Let A, B be disjoint γ-closed sets in X. Since A ∩ B = ∅ we have A ⊆ X − B,
where X −B is γ-open. Hence X −B is a γ-open set containing the γ-closed set A. By (ii) there
exists γ̃-open set U of A such that clγ̃(U) ⊆ X −B. Hence clγ̃(U) ∩B = ∅.

(iii) ⇒ (i). Let A, B be disjoint γ-closed sets in X. By (iii), there exists a γ̃-open set U1 of
A such that clγ̃(U1) ∩ B = ∅ ⇒ B ⊆ X − clγ̃(U1). Take U2 = X − clγ̃(U1), then U2 is a γ̃-open
set containing the γ-closed set B. Also U1∩U2 = U1∩(X−clγ̃(U1)) = ∅. Hence X is (γ, γ̃)-normal.

(i) ⇒ (iv). Follows from the definition of (γ, γ̃)-normal and Remark 2.1.

(iv) ⇒ (v). Let A be any γ-closed set and V a γ-open set containing A. Since A and X − V are
disjoint γ-closed sets of X, there exists gγ̃-open sets U and W of X such that A ⊆ U , X −V ⊆ W
and U ∩ W = ∅. Therefore by definition of gγ̃-open, we have that X − V ⊆ intγ̃(W ). Since
U ∩ intγ̃(W ) = ∅, we have that clγ̃(U) ∩ intγ̃(W ) = ∅ and hence clγ̃(U) = X − intγ̃(W ) ⊆ V .
Therefore A ⊆ U ⊆ clγ̃(A) ⊆ V .

(v) ⇒ (i). Let A and B be any disjoint γ-closed sets of X. Since X − B is a γ-open set con-
taining A and by (v), there exists a gγ̃-open set G such that A ⊆ G ⊆ clγ̃(G) ⊆ X − B. By
the definition of gγ̃-open, we have that A ⊆ intγ̃(G). Put U = intγ̃(G) and V = X − clγ̃(G).
This implies that U and V are disjoint γ̃-open sets such that A ⊆ U and B ⊆ V . Therefore X is
(γ, γ̃)-normal.

Theorem 4.2. Let f : X → Y be a mapping. If f is (γ, β)-continuous, (γ̃, β̃)-open, surjective and
X is (γ, γ̃)-normal, then Y is (β, β̃)-normal.

Proof. Let A and B be any two disjoint β-closed sets in Y . Since f is (γ, β)-continuous, f−1(A)
and f−1(B) are disjoint γ-closed in X. As X is (γ, γ̃)-normal, there exist disjoint γ̃-open sets U
and V of X such that f−1(A) ⊆ U and f−1(B) ⊆ V and U ∩ V = ∅. Since f is (γ̃, β̃)-open and
surjective we have that f(U) and f(V ) are β̃-open sets in Y such that A ⊆ f(U) and B ⊆ f(V )
and f(U) ∩ f(V ) = ∅. Hence Y is (β, β̃)-normal.

Theorem 4.3. Let f : X → Y be a mapping. If f is (γ, β)-closed and (γ̃, β̃)-continuous, injective
and Y is (β, β̃)-normal, then X is (γ, γ̃)-normal.

Proof. Let A and B be any two disjoint γ-closed in X. Since f is (γ, β)-closed, f(A) and f(B)
are disjoint β-closed sets in Y . As Y is (β, β̃)-normal, there exist disjoint β̃-open sets U and
V of Y such that f(A) ⊆ U and f(B) ⊆ V and U ∩ V = ∅. Since f is (γ̃, β̃)-continuous and
injective we have that f−1(U), f−1(V ) are γ̃-open sets in X and A ⊆ f−1(U), B ⊆ f−1(V ) and
f−1(U) ∩ f−1(V ) = ∅. Hence X is (γ, γ̃)-normal.
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Definition 4.2. A topological space X is said to be (γ, γ̃)-regular if for each γ-closed set F of X
and each point x ∈ X − F , there exist disjoint γ̃-open sets U , V such that F ⊆ U and x ∈ V .

Example 4.2. Let X = {a, b, c, d}, τ = {∅, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}, {a, b, d}}
and define an operation γ : τ → P (X) by

Aγ =

{
A ∪ {c} if A = {a, b, d}
A if A ̸= {a, b, d} for every A ∈ τ .

Then γ̃O(X) = {∅, X, {a}, {b}, {c}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d},
{a, c, d}, {b, c, d}}. Hence X is (γ, γ̃)-regular.

Theorem 4.4. Let X be a topological space. Then the following properties are equivalent:
(i) X is (γ, γ̃)-regular;
(ii) for each x ∈ X and each γ-open set U of x, there exists a γ̃-open set V of x such that

clγ̃(V ) ⊆ U ;
(iii) for each γ-closed set F of X, ∩{clγ̃(V ) : F ⊆ V, V ∈ γ̃O(X)} = F ;
(iv) for each A ⊆ X and each γ-open set U with A ∩ U ̸= ∅, there exists a γ̃-open set V such that

A ∩ V ̸= ∅ and clγ̃(V ) ⊆ U ;
(v) for each A ⊆ X and each γ-closed subset F of X with A ∩ F = ∅, there exist V , W ∈ γ̃O(X)

such that A ∩ V ̸= ∅, F ⊆ W and W ∩ V = ∅;
(vi) for each γ-closed set F and x ̸∈ F , there exists a γ̃-open set G and a gγ̃-open set V such that

x ∈ G, F ⊆ V and G ∩ V = ∅;
(vii) for each A ⊆ X and each γ-closed set F with A ∩ F = ∅, there exists a γ̃-open set G and a

gγ̃-open set V such that A ∩G ̸= ∅, F ⊆ V and G ∩ V = ∅;
(viii) for each γ-closed set F of X, F = ∩{clγ̃(V ) : F ⊆ V, V ∈ Gγ̃O(X)}.

Proof. (i) ⇒ (ii). Let x ̸∈ X − U and U be a γ-open set containing x. Then by (i), there
exists G, V ∈ γ̃O(X) such that X − U ⊆ G, x ∈ V and G ∩ V = ∅. Therefore V ⊆ X − G and
x ∈ V ⊆ clγ̃(V ) ⊆ X −G ⊆ U .

(ii) ⇒ (iii). Let X − F be a γ-open set containing x. Then by (ii), there exists a γ̃-open set
G of x such that x ∈ G ⊆ clγ̃(G) ⊆ X − F . This implies that F ⊆ X − clγ̃(G) = V , V ∈ γ̃O(X)
and V ∩G = ∅. Then by Remark 2.1, x ̸∈ clγ̃(V ) and hence F ⊇ {clγ̃(V ) : F ⊆ V , V ∈ γ̃O(X)}.

(iii) ⇒ (iv). Let U be a γ-open set with x ∈ U ∩ A. Then x ̸∈ X − U and by (iii), there ex-
ists a γ̃-open set W such that X − U ⊆ W and x ̸∈ clγ̃(W ). We put V = X − clγ̃(W ), which is
a γ̃-open set containing x and hence V ∩A ̸= ∅. Now V ⊆ X−W and so that clγ̃(V ) ⊆ X−W ⊆ U .

(iv) ⇒ (v). Let A ⊆ X and F be a γ-closed set in X with A ∩ F = ∅. Then X − F is γ-
open and (X − F ) ∩ A ̸= ∅. Then by (iv), there exists V ∈ γ̃O(X) such that A ∩ V ̸= ∅ and
clγ̃(V ) ⊆ X − F . If we put W = X − clγ̃(V ), then W ∈ γ̃O(X), F ⊆ W and W ∩ V = ∅.

(v) ⇒ (i). Let F be a γ-closed set not containing x. Then by (v), there exist V , W ∈ γ̃O(X) such
that F ⊆ W and x ∈ V and W ∩ V = ∅.

(i) ⇒ (vi). Follows from the definition of (γ, γ̃)-regular and by Remark 2.2.

(vi)⇒ (vii). Let A ⊆ X and F be a γ-closed set inX with A∩F = ∅. For a ∈ A, a ̸∈ X−A ⇒ a ̸∈ F
and hence by (vi), there exists G ∈ γ̃O(X) and a gγ̃-open set V such that a ∈ G, F ⊆ V and
G ∩ V = ∅. Hence A ∩G ̸= ∅.

(vii) ⇒ (i). Let x ̸∈ F , where F is γ-closed. Since {x} ∩ F = ∅, by (vii), there exists G ∈ γ̃O(X)
and a gγ̃-open set W such that x ∈ G, F ⊆ W and G ∩ W = ∅. Now put V = intγ̃(W ). By
definition of gγ̃-open sets, we get F ⊆ V and V ∩G = ∅.

(iii) ⇒ (viii). We have that F ⊆ ∩{clγ̃(V ) : F ⊆ V, V ∈ Gγ̃O(X)} ⊆ ∩{clγ̃(V ) : F ⊆ V, V ∈
γ̃O(X)} = F .
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(viii) ⇒ (i). Let F be a γ-closed set in X not containing x. Then by (viii), there exists a
gγ̃-open set V such that F ⊆ V and x ∈ X − intγ̃(V ). Since F is γ-closed and V is gγ̃-open,
F ⊆ intγ̃(V ). Take W = intγ̃(V ). Then F ⊆ W , x ∈ G = X − clγ̃(W ) and G ∩W = ∅.

Theorem 4.5. f : X → Y be a mapping. If f is (γ, β)-continuous, (γ̃, β̃)-open, surjective and X
is (γ, γ̃)-regular, then Y is (β, β̃)-regular.

Proof. Let y ∈ Y and F be any β-closed in Y with y ̸∈ F . Since f is (γ, β)-continuous, f−1(F )
is γ-closed in X. Since f is surjective, let f(x) = y, then x = f−1(y) ⇒ x ̸∈ f−1(F ). Since
X is (γ, γ̃)-regular there exists γ̃-open sets U and V in X such that x ∈ U and f−1(F ) ⊆ V
and U ∩ V = ∅. As f is (γ̃, β̃)-open, f(U) and f(V ) are β̃-open in Y . Since f is surjective,
f(U) ∩ f(V ) = f(U ∩ V ) = ∅. Hence Y is (β, β̃)-regular.

Theorem 4.6. Let f : X → Y be a mapping. If f is (γ, β)-closed and (γ̃, β̃)-continuous, injective
and Y is (β, β̃)-regular, then X is (γ, γ̃)-regular.

Proof. Let F be any γ-closed in X with x ∈ X and x ̸∈ F . Since f is (γ, β)-closed, f(F )
is β-closed in Y , f(x) ∈ Y and f(x) ̸∈ f(F ). Since Y is (β, β̃)-regular there exists β̃-open
sets U and V in Y such that f(x) ∈ U and f(F ) ⊆ V and U ∩ V = ∅ ⇒ x ∈ f−1(U) and
F ⊆ f−1(V ). As f is (γ̃, β̃)-continuous, f−1(U) and f−1(V ) are γ̃-open in X. Since f is injective,
f−1(U) ∩ f−1(V ) = f−1(U ∩ V ) = ∅. Hence X is (γ, γ̃)-regular.
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