Generalized Fixed-Point Theorems in Bn-Metric Spaces and Their Applications

S. Ravi Kumar¹, M. Durga Ratnam² and G. Srinivasa Rao³

^{1,2,3} Mathematics Department, Sir C. R. Reddy college of Engineering, Eluru-534007, India.

ABSTRACT. In this paper, we present a general fixed-point theorem for B_n -metric spaces, which generalizes fixed-point results from S-metric spaces. As applications, we derive several analogues of well-known fixed-point theorems in metric spaces, extending them to B_n -metric spaces.

Mathematics Subject Classification: 54H25, 54E99.

Keywords: B_n -metric space, B_n -metric space with index, Fixed-point theorems.

1. Introduction and Preliminaries

The generalizations of the contraction principle in different directions as well as many new fixed-point results with applications have been established by different researchers ([1], [2], [7], [11], [13], [15], [17]).

In [16], Ch. Srinivasa Rao, S. Ravi Kumar, and K.K.M. Sarma introduced the notion of a B_n -metric space as follows.

DEFINITION 1.1. Let X be a non-empty set. A B_n -metric on X is a function $d: X \times X \to \mathbb{R}$ that satisfies the following conditions for all $x, y, z \in X$:

- (i) d(x,y) = 0 if and only if x = y.
- (ii) d(x, y) = d(y, x) (symmetry).
- (iii) $d(x,z) \leq b[d(x,y) + d(y,z)]$, for some $b \geq 1$ (generalized triangle inequality).

The pair (X, d) is called a B_n -metric space.

This notion generalizes both b-metric spaces and S-metric spaces [14]. For the fixed-point problem in generalized metric spaces, numerous results have been proved. See, for example, [1], [7], [9], [10], for example in [16], the authors proved some properties of B_n -metric spaces. Also, they proved Some fixed-point theorems for a self-map on an B_n -metric space.

Now we recall some notions and lemmas that will be useful later.

DEFINITION 1.2. , [16]] Let X be a nonempty set. A B_n -metric on X is a function $B_n: X^n \to [0, \infty)$ such that there exists a real number $\lambda \geqslant 1$ satisfying the following conditions for all $x_1, x_2, \ldots, x_n, a \in X$:

- (B1) $B_n(x_1, x_2, ..., x_n) = 0$ if and only if $x_1 = x_2 = ... = x_n$.
- (B2) $B_n(x_1, x_2, \dots, x_n) = B_n(x_n, x_{n-1}, \dots, x_1).$

(B3)
$$B_n(x_1, x_2, \dots, x_n) \leq \lambda \Big[B_n(x_1, x_1, \dots, x_1, a) + B_n(x_2, x_2, \dots, x_2, a) + \dots + B_n(x_n, x_n, \dots, x_n, a) \Big].$$

The pair (X, B_n) is called a B_n -metric space.

DEFINITION 1.3., [16] Let (X, B_n) be a B_n -metric space. For r > 0, the open ball $B_S(x, r)$ and the closed ball $B_S[x, r]$ with center x and radius r are defined as follows:

$$B_S(x,r) = \{ y \in X : B_n(y, y, y, x) < r \},\$$

$$B_S[x,r] = \{ y \in X : B_n(y,y,y,x) \leqslant r \}.$$

The topology induced by the B_n -metric is the topology generated by the base of all open balls in X.

DEFINITION 1.4., [16] Let (X, B_n) be a B_n -metric space.

- (1) A sequence $\{x_n\} \subset X$ converges to $x \in X$ if $B_n(x_n, x_n, \dots, x_n, x) \to 0$ as $n \to \infty$. That is, for each $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$, we have $B_n(x_n, x_n, \dots, x_n, x) < \varepsilon$. We write $x_n \to x$ for brevity.
- (2) A sequence $\{x_n\} \subset X$ is a Cauchy sequence if $B_n(x_n, x_n, \ldots, x_n, x_m) \to 0$ as $n, m \to \infty$. That is, for each $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that for all $n, m \ge n_0$, we have $B_n(x_n, x_n, \ldots, x_n, x_m) < \varepsilon$.
- (3) The B_n -metric space (X, B_n) is complete if every Cauchy sequence is convergent.

Lemma 1.1., [16] In a B_n -metric space, we have:

$$B_n(x_1, x_1, \dots, x_1, x_2) = B_n(x_2, x_2, \dots, x_2, x_1), \text{ for all } x_1, x_2 \in X.$$

LEMMA 1.2., [16] Let (X, B_n) be a B_n -metric space. If $x_{1_n} \to x_1, x_{2_n} \to x_2, \ldots, x_{n-1_n} \to x_{n-1}$, then:

$$B_n(x_{1_n}, x_{1_n}, x_{2_n}, \dots, x_{n-1_n}) \to B_n(x_1, x_1, x_2, \dots, x_{n-1}).$$

EXAMPLE 1.1. Let \mathbb{R} be the real line. Define:

$$B_n(x_1, x_2, \dots, x_n) = |x_1 - x_n| + |x_2 - x_n| + \dots + |x_1 + x_2 + \dots + |x_{n-1} - (n-1)x_n|,$$

for all $x_1, x_2, \ldots, x_n \in \mathbb{R}$. Then B_n is a B_n -metric on \mathbb{R} . This B_n -metric is called the usual B_n -metric on \mathbb{R} .

2. Main Results

First, we prove some properties of B_n -metric spaces.

PROPOSITION 2.1. Let (X, B_n) be a B_n -metric space, and let

$$B_{n-1}(x_1, x_2, \dots, x_{n-1}) = B_n(x_1, x_1, x_2, \dots, x_{n-1}) + B_n(x_1, x_2, x_2, \dots, x_{n-1}) + \dots + B_n(x_1, x_2, \dots, x_{n-1}, x_{n-1}),$$
for all $x_1, x_2, \dots, x_{n-1} \in X$. Then we have the following:

- (1) B_{n-1} is a B_n -metric on X.
- (2) $x_n \to x$ in (X, B_n) if and only if $x_n \to x$ in (X, B_{n-1}) .
- (3) $\{x_n\}$ is a Cauchy sequence in (X, B_n) if and only if $\{x_n\}$ is a Cauchy sequence in (X, B_{n-1}) .

Proposition 2.2. Let (X, B_n) be a B_n -metric space. Then:

- (1) X is first-countable.
- (2) X is regular.

REMARK 2.1. By Propositions 2.1 and 2.2, we have that every B_n -metric space is topologically equivalent to a B_n -metric space.

COROLLARY 2.1. Let $f: X \to Y$ be a map from a B_n -metric space X to a B_n -metric space Y. Then f is continuous at $x \in X$ if and only if $f(x_n) \to f(x)$ whenever $x_n \to x$.

THEOREM 2.1. Let T be a self-map on a complete B_n -metric space (X, B_n) , and let

$$B_n(Tx_1, Tx_1, \dots, Tx_1, Tx_2) \leq M(B_n(x_1, x_1, \dots, x_1, x_2), B_n(Tx_1, Tx_1, \dots, Tx_1, x_1),$$

$$B_n(Tx_1, Tx_1, \dots, Tx_1, x_2), B_n(Tx_2, Tx_2, \dots, Tx_2, x_1), B_n(Tx_2, Tx_2, \dots, Tx_2, x_2)),$$

for all $x_1, x_2, \ldots, x_n \in X$ and some $M \in \mathcal{M}$. Then:

(1) If M satisfies condition (C1), then T has a fixed-point. Moreover, for any $x_0 \in X$ and the fixed-point x, we have

$$B_n(Tx_n, Tx_n, \dots, Tx_n, x_n) \leqslant \frac{1-k}{2k^n} B(x_0, x_0, \dots, x_0, Tx_0).$$

- (2) If M satisfies condition (C2) and T has a fixed-point, then the fixed-point is unique.
- (3) If M satisfies condition (C3) and T has a fixed-point x, then T is continuous at x.

Corollary 2.2. , [12] Let T be a self-map on a complete B_n -metric space (X,B_n) and

$$B_n(Tx, Tx, \dots, Tx, Ty) \leqslant LB_n(x, x, \dots, x, y),$$

for some $L \in [0,1)$ and all $x,y \in X$. Then T has a unique fixed-point in X. Moreover, T is continuous at the fixed-point.

PROOF. The assertion follows using Theorem 2.6 with:

$$M(x_1, x_2, \dots, x_{n+1}) = Lx,$$

for some $L \in [0,1)$ and all $x_1, x_2, \ldots, x_{n+1} \in \mathbb{R}_+$.

COROLLARY 2.3. Let T be a self-map on a complete B_n -metric space (X, B_n) , and suppose:

$$B_n(Tx, Tx, \dots, Tx, Ty) \leq a(B_n(Tx, Tx, \dots, Tx, x) + B_n(Ty, Ty, \dots, Ty, y)),$$

for some $a \in [0, 1/2)$ and all $x, y \in X$. Then T has a unique fixed-point in X. Moreover, T is continuous at the fixed-point.

PROOF. The assertion follows using Theorem 2.6 with:

$$M(x_1, x_2, \dots, x_{n+1}) = a(x_2 + x_{n+1}),$$

for some $a \in [0, 1/2)$ and all $x_1, x_2, ..., x_{n+1} \in \mathbb{R}_+$.

Indeed, M is continuous.

Condition (C1): We have:

$$M(x_1, x_1, \dots, 0, \dots, x_n, x_{n-1}) = a(x_1 + \dots + x_{n-1}).$$

If $y \leq M(x_1, x_1, 0, x_{n+1}, x_n)$ with $x_{n+1} \leq 2x_1 + x_n$, then:

$$y \leqslant \frac{a}{1-a}x$$
, where $\frac{a}{1-a} < 1$.

Therefore, T satisfies condition (C1).

Condition (C2): If:

$$x_n \leqslant M(x_n, 0, \dots, x_n, x_n, 0, \dots) = 0,$$

then $x_n = 0$. Thus, T satisfies condition (C2).

Condition (C3): If $x_i \leq y_i + z_i$ for $i \leq n+1$, then:

$$M(x_1, \dots, x_{n+1}) = a(x_2 + \dots + x_{n+1}) \le a[(y_2 + z_2) + \dots + (y_{n+1} + z_{n+1})],$$

$$= a(y_2 + z_2) + \dots + a(y_{n+1} + z_{n+1}) = M(y_1, \dots, y_{n+1}) + M(z_1, \dots, z_{n+1}).$$

Moreover:

$$M(0,0,\ldots,0,y,2y) = a(0+2y) = 2ay$$
, where $2a < 1$.

Therefore, T satisfies condition (C3).

S. RAVI KUMAR¹, M. DURGA RATNAM² AND G. SRINIVASA RAO³

REMARK 2.2. Note that the coefficient k in conditions (C1) and (C3) may be different, for example, k_1 and k_3 respectively. However, we may assume that they are equal by setting $k = \max\{k_1, k_3\}$.

EXAMPLE 2.1. Let \mathbb{R} be the usual B_n -metric space as in Example 1.7, and define T by:

$$T(x) = \begin{cases} \frac{1}{2}, & \text{if } x \in [0, 1), \\ \frac{1}{4}, & \text{if } x = 1. \end{cases}$$

Then T is a self-map on a complete B_n -metric space $[0,1] \subset \mathbb{R}$.

For all $x \in (3/4, 1)$, we have:

$$B_n(Tx, Tx, \dots, Tx) = B_n\left(\frac{1}{2}, \frac{1}{2}, \dots, \frac{1}{4}\right) = \left|\frac{1}{2} - \frac{1}{4}\right| + \dots + \left|\frac{1}{2} - \frac{1}{4}\right| = \frac{1}{2},$$

and

4

$$B_n(x, x, \dots, 1) = |x - 1| + \dots + |x - 1| = n|x - 1| < \frac{1}{2}$$

Thus, T does not satisfy the condition of Corollary 2.7.

Next, we have:

$$B_4(Tx, Tx, Tx, Ty) \leqslant \frac{5}{12} (B_4(Tx, Tx, Tx, x) + B_4(Ty, Ty, Ty, y)),$$

which shows that T satisfies the condition of Corollary 2.8. It is clear that $x = \frac{1}{2}$ is the unique fixed-point of T.

COROLLARY 2.4. Let T be a self-map on a complete B_n -metric space (X, B_n) , and suppose:

$$B_n(Tx, Tx, \dots, Tx, Ty) \leqslant h\left(B_n(Tx, Tx, \dots, Tx, x) + B_n(Ty, Ty, \dots, Ty, y)\right),$$

for some $h \in [0,1)$ and all $x,y \in X$. Then T has a unique fixed-point in X. Moreover, if $h \in [0,1/2)$, then T is continuous at the fixed-point.

PROOF. The assertion follows using Theorem 2.6 with:

$$M(x_1, x_2, \dots, x_{n+1}) = h \max(x_{n-2}, x_{n+1}),$$

for some $h \in [0,1)$ and all $x_1, \ldots, x_{n+1} \in \mathbb{R}_+$.

Indeed, M is continuous. First, we have:

$$M(x_1, x_1, \dots, 0, \dots, x_n, x_{n-1}) = h \max(x, y).$$

If $y \leq M(x_1, x_1, 0, \dots, x_n, x_{n-1})$ with $x_n \leq 2x_1 + x_{n-1}$, then:

$$y \leqslant hx$$
 or $x_{n-1} \leqslant hx_{n-1}$.

Therefore, $x_{n-1} \leq hx_1$, and hence, T satisfies condition (C1).

Next, if $y \leq M(y,0,y,y,0) = h \max(y,0) = hy$, then y = 0 since h < 1/2. Therefore, T satisfies condition (C2).

Finally, if $x_i \leq y_i + z_i$ for $i \leq n+1$, then:

$$M(x_1, \dots, x_{n+1}) = h(x_2, x_{n+1}) \le h(y_2 + z_2, y_{n+1} + z_{n+1}) \le h(y_2, y_{n+1}) + h(z_2, z_{n+1})$$

$$= M(y_1, \dots, y_{n+1}) + M(z_1, \dots, z_{n+1}).$$

Moreover, if $h \in [0, 1/2)$, then 2h < 1 and:

$$M(0,0,\ldots,0,y,2y) = h(0+2y) = 2hy,$$

where 2h < 1.

Therefore, T satisfies condition (C3).

PAGE N0: 85

EXAMPLE 2.2. Let \mathbb{R} be the usual B_n -metric space as in Example 1.7, and define $T(x) = \frac{x}{n}$ for all $x \in [0,1]$. We have:

$$B_n(Tx, Tx, \dots, Tx, Ty) = B_n\left(\frac{x}{n}, \frac{x}{n}, \dots, \frac{x}{n}, \frac{y}{n}\right) = \left|\frac{x}{n} - \frac{y}{n}\right| + \left|\frac{x}{n} - \frac{y}{n}\right| + \dots + \left|\frac{x}{n} - \frac{y}{n}\right|$$
$$= \frac{n-1}{n}|x-y|.$$

Next, for the case where x = T(x):

$$B_n(Tx, Tx, \dots, Tx, x) = B_n\left(\frac{x}{n}, \frac{x}{n}, \dots, \frac{x}{n}, x\right) = \left|\frac{x}{n} - x\right| + \left|\frac{x}{n} - x\right| + \dots$$
$$= \frac{n}{n}|x| = |x|.$$

Similarly, for y = T(y):

$$B_n(Ty, Ty, \dots, Ty, y) = B_n\left(\frac{y}{n}, \frac{y}{n}, \dots, \frac{y}{n}, y\right) = \frac{n}{n}|y| = |y|.$$

Thus, for all $x, y \in X$:

$$B_n(Tx, Tx, ..., Tx, x) + B_n(Ty, Ty, ..., Ty, y) = \frac{n}{n}(|x| + |y|).$$

Finally, we have:

$$B_n(Tx, Tx, \dots, Tx, Ty) = \frac{n-1}{n} B_n(Tx, Tx, \dots, Tx, 1) + B_n(T0, T0, \dots, T0, 0) = 1.$$

This proves that T does not satisfy the condition of Corollary 2.8. However, we do have that T satisfies the condition of Corollary 2.10 with $h = \frac{n-1}{n}$, and T has a unique fixed-point at x = 0.

COROLLARY 2.5. Let T be a self-map on a complete B_n -metric space (X, B_n) , and suppose:

$$B_n(Tx, Tx, \dots, Tx, Ty) \leq aB_n(x, x, \dots, x, y) + bB_n(Tx, Tx, \dots, Tx, x) + cB_n(Ty, Ty, \dots, Ty, y),$$

for some $a, b, c \ge 0$, and a + b + c < 1, and for all $x, y \in X$. Then T has a unique fixed-point in X. Moreover, if c < 1/2, then T is continuous at the fixed-point.

PROOF. The assertion follows using Theorem 2.6 with:

$$M(x_1, x_2, \dots, x_{n+1}) = ax_1 + bx_2 + \dots + cx_{n+1},$$

for some $a, b, c \ge 0$, with a + b + c < 1 and all $x_1, \ldots, x_{n+1} \in \mathbb{R}_+$. Indeed, M is continuous. First, we have:

$$M(x_1, x_1, \dots, 0, x_n, x_{n-1}) = ax_1 + bx_2 + \dots + cx_{n+1}.$$

If $y \leq M(x_1, x_1, \dots, 0, x_n, x_{n-1})$ with $x_n \leq 2x_{n-2} + x_{n-1}$, then:

$$x_{n-1} \leqslant \frac{a+b}{1-c} x_{n-2}$$
, where $\frac{a+b}{1-c} < 1$.

Therefore, T satisfies condition (C1).

Next, if $x_{n-1} \leq M(x_{n-1}, \dots, 0, \dots, x_{n-1}, x_{n-1}, \dots) = ax_{n-1}$, then $x_{n-1} = 0$, since a < 1. Therefore, T satisfies condition (C2).

Finally, if $x_i \leq y_i + z_i$ for $i \leq n+1$, then:

$$M(x_1, \dots, x_{n+1}) = ax_1 + bx_2 + \dots + cx_{n+1} \le a(y_1 + z_1) + b(y_2 + z_2) + \dots + c(y_{n+1} + z_{n+1})$$

$$= (ay_1 + by_2 + \dots + cy_{n+1}) + (az_1 + bz_2 + \dots + cz_{n+1}) = M(y_1, \dots, y_{n+1}) + M(z_1, \dots, z_{n+1}).$$

Moreover:

$$M(0,0,\ldots,0,x_{n-1},2x_{n-1})=2cx_{n-1},$$
 where $2c<1$.

Therefore, T satisfies condition (C3).

EXAMPLE 2.3. Let \mathbb{R} be the usual B_n -metric space as in Example 1.7, and define $T(x) = \frac{x}{n-2}$ for all $x \in [0,1]$. We have:

$$B_n(Tx, Tx, \dots, Tx, Ty) = \left| \frac{x}{n-2} - \frac{y}{n-2} \right| + \left| \frac{x}{n-2} - \frac{y}{n-2} \right| + \dots + \left| \frac{x}{n-2} - \frac{y}{n-2} \right|$$
$$= \frac{n-1}{n-2} |x-y|.$$

Next, for the case where x = T(x):

$$B_n(Tx, Tx, \dots, Tx, x) = \left| \frac{x}{n-2} - x \right| + \left| \frac{x}{n-2} - x \right| + \dots = |x|.$$

Thus, we have:

$$B_n(Tx, Tx, \dots, Tx, T_0) = |x|, \max\{B_n(Tx, Tx, \dots, Tx, x), B_n(T_0, T_0, \dots, T_0, 0)\} = |x|.$$

This proves that T does not satisfy the condition of Corollary 2.10. However, we also have:

$$B_n(Tx, Tx, \dots, Tx, Ty) \leqslant \frac{n-1}{n-2} B_n(x, x, \dots, x, y) + \frac{n-3}{n-1} B_n(Tx, Tx, \dots, Tx, x) + \frac{n-3}{n-1} B_n(Ty, Ty, \dots, Ty, y).$$

Thus, T satisfies the condition of Corollary 2.12, and it is clear that T has a unique fixed-point at x = 0.

COROLLARY 2.6. Let T be a self-map on a complete B_n -metric space (X, B_n) , and suppose:

$$B_n(Tx, Tx, \dots, Tx, Ty) \leqslant h\left(B_n(Tx, Tx, \dots, Tx, y) + B_n(Ty, Ty, \dots, Ty, x)\right),$$

for some $h \in \left[0, \frac{n-3}{n-1}\right)$ and all $x, y \in X$. Then T has a unique fixed-point in X. Moreover, T is continuous at the fixed-point.

PROOF. The assertion follows using Theorem 2.6 with:

$$M(x_1, x_2, \dots, x_{n+1}) = h \max(x_{n-1}, x_n),$$

for some $h \in \left[0, \frac{n-3}{n-1}\right)$ and all $x_1, \dots, x_{n+1} \in \mathbb{R}_+$. Indeed, M is continuous.

$$M(x_1, x_1, \dots, 0, \dots, x_{n-1}, x_{n-2}) = h \max(0, x_{n-1}).$$

If $x_{n-2} \leq M(x_1, x_1, \dots, 0, \dots, x_{n-1}, x_{n-2})$ with $x_{n-1} \leq 2x_{n-3} + x_{n-2}$, then:

$$x_{n-2} \leqslant \frac{2h}{1-h} x_{n-3}$$
, where $\frac{2h}{1-h} < 1$.

Therefore, T satisfies condition (C1).

Next, if $x_{n-2} \leq M(x_{n-2}, 0, ..., x_{n-2}, x_{n-2}, ..., 0) = hy$, then $x_{n-2} = 0$, since $h < \frac{n-3}{n-1}$. Thus, T satisfies condition (C2).

Finally, if $x_i \leq y_i + z_i$ for $i \leq n + 1$, then:

$$M(x_1, \dots, x_{n+1}) = h\{x_{n-1}, x_n\} \le h\{y_{n-1} + z_{n-1}, y_n + z_n\}$$
$$= h\{y_{n-1}, y_n\} + h\{z_{n-1}, z_n\} = M(y_1, \dots, y_{n+1}) + M(z_1, \dots, z_{n+1}).$$

Moreover:

$$M(0,0,\ldots,0,y,2y) = h\{0,2y\} = 2hy$$
, where $h < 1$.

Therefore, T satisfies condition (C3).

COROLLARY 2.7. Let T be a self-map on a complete B_n -metric space (X, B_n) , and suppose:

$$B_n(Tx, Tx, \dots, Tx, Ty) \leq a \left(B_n(Tx, Tx, \dots, Tx, y) + B_n(Ty, Ty, \dots, Ty, x)\right),$$

for some $a \in \left[0, \frac{n-3}{n-1}\right)$ and all $x_1, \ldots, x_{n+1} \in X$. Then T has a unique fixed-point in X. Moreover, T is continuous at the fixed-point.

PROOF. The assertion follows using Theorem 2.6 with:

$$M(x_1, x_2, \dots, x_{n+1}) = a(x_{n-1} + x_n),$$

for some $a \in \left[0, \frac{n-3}{n-1}\right)$ and all $x_1, \dots, x_{n+1} \in \mathbb{R}_+$. Indeed, M is continuous. First, we have:

$$M(x_1, x_1, \dots, 0, \dots, x_{n-1}, x_{n-2}) = a(0 + x_{n-1}) = ax_{n-1}.$$

If $x_{n-2} \leq M(x_1, x_1, \dots, 0, \dots, x_{n-1}, x_{n-2})$ with $x_{n-1} \leq 2x_{n-3} + x_{n-2}$, then:

$$x_{n-2} \leqslant \frac{2a}{1-a} x_{n-3}$$
, where $\frac{2a}{1-a} < 1$.

Therefore, T satisfies condition (C1).

Next, if $y \le M(x_{n-2}, 0, \dots, x_{n-2}, x_{n-2}, \dots, 0) = a(x_{n-2} + x_{n-2}) = 2ax_{n-2}$, then $x_{n-2} = 0$ since $2a < \frac{n-2}{n-1}$. Thus, T satisfies condition (C2).

Finally, if $x_i \leq y_i + z_i$ for $i \leq n+1$, then:

$$M(x_1, \dots, x_{n+1}) = a(x_{n-1} + x_n) \le a\{y_{n-1} + z_{n-1}, y_n + z_n\}$$
$$= a\{y_{n-1}, y_n\} + a\{z_{n-1}, z_n\} = M(y_1, \dots, y_{n+1}) + M(z_1, \dots, z_{n+1}).$$

Moreover:

$$M(0,0,\ldots,0,x_{n-2},2x_{n-2}) = a(0+x_{n-2}) = ax_{n-2},$$
 where $a < 1$.

Therefore, T satisfies condition (C3).

EXAMPLE 2.4. Let \mathbb{R} be the usual B_n -metric space as in Example 1.7, and define:

$$T(x) = \frac{x}{n-1}, \quad \text{for all } x \in [0,1].$$

Then we have:

$$B_n(Tx, Tx, \dots, Tx, Ty) = (n-2) \left| \frac{x}{n-1} - \frac{y}{n-1} \right| = \frac{n-2}{n-1} |x-y|,$$

$$B_n(Tx, Tx, \dots, Tx, y) = (n-2) \left| \frac{x}{n-1} - y \right|,$$

$$B_n(Ty, Ty, \dots, Ty, x) = (n-2) \left| \frac{y}{n-1} - x \right|.$$

It implies that:

$$B_n(T_1, T_1, \dots, T_1, T_0) = \frac{n-2}{n-1} B_n(T_1, T_1, \dots, T_1, 0) = \frac{n-2}{n-1} B_n(T_0, T_0, \dots, T_0, 1) = n-2.$$

This proves that T does not satisfy the condition of Corollary 2.14.

We also have:

$$B_n(Tx, Tx, \dots, Tx, y) + B_n(Ty, Ty, \dots, Ty, x) = (n-2) \left| \frac{x}{n-1} - y \right| + (n-2) \left| \frac{y}{n-1} - x \right| \geqslant \frac{8}{n-1} |x-y|.$$

Therefore, T satisfies the condition of Corollary 2.15, and it is clear that T has a unique fixed-point at x = 0.

COROLLARY 2.8. Let T be a self-map on a complete B_n -metric space (X, B_n) , and suppose:

$$B_n(Tx, Tx, \dots, Tx, Ty) \leqslant aB_n(x, x, \dots, x, y) + bB_n(Tx, Tx, \dots, Tx, y) + cB_n(Ty, Ty, \dots, Ty, x),$$

for some $a, b, c \ge 0$, a + b + c < 1, and a + 3c < 1, and for all $x, y \in X$. Then T has a unique fixed-point in X. Moreover, T is continuous at the fixed-point.

S. RAVI KUMAR¹, M. DURGA RATNAM² AND G. SRINIVASA RAO³

PROOF. The assertion follows using Theorem 2.6 with:

$$M(x_1, x_2, \dots, x_{n+1}) = ax_1 + bx_{n-1} + cx_n,$$

for some $a, b, c \ge 0$, with a + b + c < 1 and a + 3c < 1 and all $x_1, \ldots, x_{n+1} \in \mathbb{R}_+$. Indeed, M is continuous.

First, we have:

8

$$M(x_1, x_1, \dots, 0, \dots, x_{n-1}, x_{n-2}) = ax_1 + cx_{n-1}.$$

If $x_{n-2} \leq M(x_1, x_1, \dots, 0, \dots, x_{n-1}, x_{n-2})$ with $x_{n-1} \leq 2x_{n-3} + x_{n-2}$, then:

$$x_{n-2} \leqslant \frac{a+2c}{1-c} x_{n-3}$$
, where $\frac{a+2c}{1-c} < 1$.

Therefore, T satisfies condition (C1).

Next, if $x_{n-2} \leq M(x_{n-2}, 0, ..., x_{n-2}, x_{n-2}, ...) = (a+b+c)x_{n-2}$, then $x_{n-2} = 0$, since a+b+c<1. Therefore, T satisfies condition (C2).

Finally, if $x_i \leq y_i + z_i$ for $i \leq n+1$, then:

$$M(x_1, \dots, x_{n+1}) = ax_{n-3} + bx_{n-1} + cx_n \le a(y_{n-3} + z_{n-3}) + b(y_{n-1} + z_{n-1}) + c(y_n + z_n)$$

$$= (ay_{n-3} + by_{n-1} + cy_n) + (az_{n-3} + bz_{n-1} + cz_n) = M(y_1, \dots, y_{n+1}) + M(z_1, \dots, z_{n+1}).$$

Moreover:

$$M(0,0,\ldots,0,y,2y) = cy$$
, where $c < 1$.

Therefore, T satisfies condition (C3).

EXAMPLE 2.5. Let \mathbb{R} be the usual B_n -metric space as in Example 1.7, and define:

$$T(x) = \frac{n-1}{n(1-x)}$$
, for all $x \in [0,1]$.

Then we have:

$$B_n(Tx, Tx, \dots, Tx, Ty) = \frac{n-1}{n-2}|x-y|,$$

$$B_n(Tx, Tx, \dots, Tx, y) = \frac{n-2}{n} |n-1/n(1-x) - y|.$$

It implies that:

$$B_n(T_1, T_1, \dots, T_1, T_0) = \frac{n-1}{n-2}, \quad \max\{B_n(T_1, T_1, \dots, T_1, 0), B_n(T_0, T_0, \dots, T_0, n-3)\} = \frac{n-3}{n-2}.$$

This proves that T does not satisfy the condition of Corollary 2.14. We also have:

$$\frac{n}{n+1}B_n(Tx,Tx,\ldots,y) + 0 \cdot B_n(Tx,Tx,\ldots,Ty) + 0 \cdot B_n(Ty,Ty,\ldots,x) = \frac{n}{n+1}|x-y| \geqslant B_n(Tx,Tx,\ldots,Ty).$$

Therefore, T satisfies the condition of Corollary 2.17. It is clear that T has a unique fixed-point at:

$$x = \frac{n-1}{7}.$$

COROLLARY 2.9. Let T be a self-map on a complete B_n -metric space (X, B_n) , and suppose:

$$B_n(Tx,Tx,\ldots,Tx,Ty) \leqslant a_1B_n(x,x,\ldots,x,y) + a_2B_n(Tx,Tx,\ldots,Tx,x) + \cdots + a_{n+1}B_n(Ty,Ty,\ldots,Ty,y),$$
for some $a_1,\ldots,a_{n+1}\geqslant 0$ such that:

$$\max \{a_1 + a_2 + \dots + a_{n-1} + a_n + a_{n+1}, a_1 + \dots + a_{n-1} + a_n, a_n + 2a_{n+1}\} < 1,$$

and for all $x, y \in X$. Then T has a unique fixed-point in X. Moreover, T is continuous at the fixed-point.

PAGE N0: 89

GENERALIZED FIXED-POINT THEOREMS IN Bn-METRIC SPACES AND THEIR APPLICATIONS

PROOF. The assertion follows using Theorem 2.6 with:

$$M(x_1, \dots, x_{n+1}) = a_1 x_1 + a_2 x_2 + \dots + a_n x_n + a_{n+1} x_{n+1},$$

for some $a_1, \ldots, a_{n+1} \ge 0$ such that:

$$\max \{a_1 + a_2 + \dots + a_{n-1} + a_n + a_{n+1}, a_1 + \dots + a_{n-1} + a_n, a_n + 2a_{n+1}\} < 1.$$

First, we have:

$$M(x_1, x_1, \dots, 0, \dots, x_{n-1}) = a_1 x_1 + a_2 x_2 + \dots + a_n x_{n-1} + a_{n+1} x_2.$$

If $x_{n-2} \leq M(x_1, x_1, \dots, 0, \dots, x_{n-1})$ with $x_{n-2}x_{n-1} \leq 2x_{n-3} + x_{n-2}$, then:

$$x_{n-2} \leqslant \frac{a_1 + a_2 + \dots + a_{n-2}}{1 - a_n - a_{n+1}} x_{n-3}, \text{ where } \frac{a_1 + a_2 + \dots + a_{n-2}}{1 - a_n - a_{n+1}} < 1.$$

Therefore, T satisfies condition (C1).

Next, if $x_{n-2} \leq M(x_{n-2}, 0, \dots, x_{n-2})$ with $x_{n-2} = 0$, then T satisfies condition (C2). Similarly, for condition (C3), we show that T satisfies the necessary inequalities.

References

- (1) R.P. Agarwal, M. Meehan, D. O' Regan, Fixed-point Theory and Applications, University Press, 2004.
- (2) I.A. Bakhtin, The contraction principle in quasi-metric spaces, *Func. An.*, Ulyanovsk, Gos. Ped. Ins., 30 (1989), 26-37.
- (3) R.M.T. Bianchini, Su un problema di S. Reich riguardante la teoria dei punti fissi, *Boll. Un. Mat. Ital.*, 5 (1972), 103-108.
- (4) S.K. Chatterjee, Fixed-point theorems, Rend. Acad. Bulg. Sci., 25 (1972), 727-730.
- (5) L.B. Ciric, A generalization of Bench's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267-273.
- (6) G. E. Hardy, T.D. Rogers, A generalization of a fixed-point theorem of Reich, *Canad. Bull.*, 16 (1973), 201-206.
- (7) M. Jovanović, Z. Kadelburg, S. Radenković, Common fixed-point results in metric type spaces, *Fixed-point Theory Appl.*, (2010), 1-15.
- (8) R. Kannan, Some results on fixed-points II, Amer. Math. Monthly, 76 (1969), 405-408.
- (9) M. A. Khamsi, Remarks on cone metric spaces and fixed-point theorems of contractive mappings, Fixed-point Theory Appl., (2010), 1-7.
- (10) M. A. Khamsi, N. Hussain, KKM mappings in metric type spaces, *Nonlinear Anal.*, 7 (2010), 3123-3129.
- (11) Z. Mustafa, B.I. Sims, A new approach to generalized metric spaces, *J. Nonlinear Convex Anal.*, 7 (2006), 289-297.
- (12) S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull., 14 (1971), 121-124.
- (13) S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed-point theorem in S-metric spaces, *Mat. Vesnik*, 64 (2012), 258-266.
- (14) S. Sedghi, N. Shobe, H. Zhou, A common fixed-point theorem in D^* -metric spaces, Fixed-point Theory Appl., (2007), 1-13.
- (15) K.K.M. Sarma, Ch. Srinivasa Rao, and S. Ravi Kumar, B₄-metric spaces and Contractions, International Journal of Engineering Research and Applications, 13(1), 43-50, (2023).
- (16) Ch. Srinivasa Rao, S. Ravi Kumar, and K.K.M. Sarma, Contractive mappings on B_n -metric spaces, Eur. Chem. Bull., 12(5), 5399-5412, (2023).
- (17) Ch. Srinivasa Rao, S. Ravi Kumar, and K.K.M. Sarma, Fixed-point theorems on B₄-metric spaces, Eur. Chem. Bull., 12(7), 1020-1039, (2023).