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ABSTRACT   

The requirement for traffic sign recognition has grown in importance along with the demand for driver assistance systems and 

autonomous cars. This is essential for maintaining the effectiveness and safety of driving assistance systems and self-driving 

automobiles, greatly enhancing traffic monitoring and safety protocols. This paper presents a technique that uses convolutional 

neural networks (CNNs) to recognise traffic signs with high accuracy in a variety of settings. Preprocessing traffic sign data in an 

efficient manner is essential to guarantee accurate detection in autonomous driving systems. Creating a deep neural network model 

especially for traffic sign classification is the suggested method. The ability to read traffic signs is made possible by this model, 

which is essential for all driver assistance programmers and autonomous cars. The process described includes crucial phases.   
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1.INTRODUCTION   

Traffic sign identification is a focus, in computer vision research and a vital element of Advanced Driver Assistance Systems 

(ADAS). It comprises two areas; detecting and recognizing traffic signs, where the accuracy of detection directly influences 

the identification results. Traffic signs play a role in providing information on road safety current traffic conditions, traffic rules 

and potential dangers assisting drivers in navigating roads safely. In todays technology driven world with a growing reliance 

on AI leading companies such, as Google, Tesla, Uber, Ford, Audi, Toyota and Mercedes Benz are dedicated to enhancing 

vehicle automation technology for autonomous or self driving vehicles.    

There are worries, about the safety of vehicles and the potential for accidents. We must recognize the work of researchers in 

improving road safety and accuracy through algorithms. When driving, encountering traffic signals such as traffic lights, speed 

limits, directional arrows and warning signs is an occurrence. Following these signals correctly is essential, for navigation.  

Self driving cars must. React to these signals to operate effectively.   

Categorizing traffic signs requires identifying the category to which each sign belongs. In our Deep Learning project we employ 

a Convolutional Neural Network (CNN) using the Karas library to develop a model of classifying different kinds of traffic 

signs. The dataset comprises, over 30,000 images showing types of traffic signs, like speed limits, pedestrian crossings and 

traffic signals.   

The dataset contains, around 43 classification categories with varying numbers of images in each category. Some categories 

have images compared to others. Despite its size of 314.36 MB the dataset allows for downloading and storage. CNNs, which 

TANZ(ISSN NO: 1869-7720)VOL19 ISSUE04 2024

PAGE NO: 487



are neural networks designed for processing pixel inputs are highly effective in tasks related to image recognition and 

processing. By utilizing the processing mechanisms of the brain CNNs can efficiently handle complete images making it easier 

to address challenges associated with processing images piece, by piece.   

Pythons Keras is a user deep learning library that simplifies the implementation of networks. While it may not be the option 

developers prefer Keras for its ease of use and seamless compatibility, with TensorFlow. Acting as the high level interface for 

TensorFlow the combination of TensorFlow Core API and Keras offers developers a platform with intuitive tools, for deep 

learning tasks. This integration enables prototyping and deployment of machine learning solutions speeding up the process of 

tackling challenges.   

2. LITERATURE REVIEW   

Zaibi et al. [1]: They propose a lightweight traffic sign classification model based on enhancing the LeNet-5 architecture, 

highlighting the benefits of batch normalization, dropout layers, and grayscale input images. Their enhanced model achieves 

high accuracy on the German Traffic Sign Recognition Benchmark dataset while being more compact and efficient, with 

suggestions for exploring lightweight architectures and real-world deployment challenges.   

Bharath Kumar et al. [2]: They present a CNN-based approach for traffic sign detection, emphasizing the effectiveness of 

data augmentation techniques and hierarchical feature learning. Achieving high accuracy on the German Traffic Sign 

Recognition Benchmark dataset, they suggest further exploration in advanced architectures and real-world challenges like 

illumination variations and occlusions.   

Ellahyani et al. [3]: Their survey comprehensively reviews traffic sign detection techniques, categorizing them based on color 

information, shape analysis, and machine learning models including CNNs. They highlight the dominance of CNNs in 

achieving high accuracy and discuss challenges like dataset collection and real-world deployment, with suggestions for future 

exploration in lightweight model compression and domain adaptation.   

Sakthivel et al. [4]: They develop a CNN model for traffic sign recognition, emphasizing the significance of data augmentation 

and proposing avenues for further exploration in advanced architectures and real-world challenges. Their model achieves high 

accuracy on the German Traffic Sign Recognition Benchmark dataset, paving the way for future research in optimizing models 

for embedded deployment and integrating with other perception modules.   

Rustad et al. [5]: Proposing a CNN model for Indonesian traffic sign classification, they achieve promising accuracy and 

suggest further exploration in advanced architectures and data augmentation techniques. Their study provides insights for 

improving classification accuracy and robustness in real-world scenarios.   

    3. EXISTING SYSTEMS   

 

Traditional approaches for traffic sign detection and recognition relied heavily on hand-crafted features and 

classical machine learning algorithms like support vector machines (SVMs), random forests, etc. These methods 

involved preprocessing steps like color thresholding, edge detection, and shape analysis to identify candidate 

traffic sign regions, followed by extracting features like histograms of oriented gradients (HOG), color 

histograms, and geometric descriptors for classification. While these techniques showed reasonable 

performance, they had several limitations:   
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1)Dataset Limitations: Hand-crafted features often require extensive dataset curation and labeling, which is time 

consuming and labour intensive. The availability of large, diverse, and accurately labeled datasets is a bottleneck.  

2)Environmental Variations: Traditional methods struggle to handle significant variations in lighting conditions, 

weather, and scene complexity, leading to performance degradation in real-world scenarios.   

3)Scalability: As the number of traffic sign classes increases or new sign designs are introduced, existing systems 

may require extensive feature engineering and retraining, making them less scalable and adaptable. 

4) Real Time Performance: Many traditional approaches are computationally intensive, making it difficult to achieve 

real-time performance, especially on resource-constrained embedded devices in vehicles.   

5) Lack of Generalization: Hand-crafted features and models trained on specific datasets may not generalize well to 

unseen traffic sign variations or different geographic regions, limiting their practical applicability.   

   

4. PROPOSED SYSTEM   

Our main goal is to create a CNN model that outperforms the accuracy of models and can be used for all types of traffic     signs. 

The process we followed includes importing and preparing the dataset optimizing data, for better model performance designing 

the model using CNN structure and testing it with sets of training and testing data.During development we kept the design simple 

by using a layers max pooling layers and batch normalization layers to ensure accuracy. We stopped adding layers when we noticed 

overfitting and achieved loss during training.   

   

Our strategy involves training a CNN model from scratch on the GTSRB dataset with 39,209 training images. This approach aims 

to enhance accuracy in recognizing traffic signs across categories while maintaining flexibility, in adapting to types of signs.   

   

4.1 PROBLEM STATEMENT    

In the context of increasing demand for autonomous vehicles and driver assistance systems, the critical need for accurate and 

reliable traffic sign recognition systems has emerged. The goal of this project is to develop and implement a robust traffic sign 

recognition solution using convolutional neural networks (CNNs) to enable autonomous vehicles and driver assistance systems to 

accurately identify and interpret traffic signs in real-time scenarios. The project aims to address challenges such as effective 

preprocessing of traffic sign data, optimizing CNN model architecture for classification accuracy, and ensuring the system's 

robustness and generalization across diverse traffic sign types and environmental conditions.   

   
5. SYSTEM ARCHITECTURE   

  

There are three types of layers that make up the CNN which are the convolutional layers, pooling layers, and 

fully-connected (FC) layers. When these layers are stacked, a CNN architecture will be formed. In addition to 

these three layers, there are two more important parameters which are the dropout layer and the activation 

function which are defined below.   

1. Convolutional Layer   

The convolutional layer extracts features by applying a filter to the input image, producing a feature  

map that highlights edges and corners. This layer maintains spatial relationships between pixels and is fundamental in 

recognizing intricate patterns within images.   
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2. Pooling Layer    

The Pooling Layer in a CNN follows the Convolutional Layer, aiming to decrease the size of the feature  

map, thus reducing computational costs. It operates independently on each feature map, employing methods like 

Max Pooling, Average Pooling, or Sum Pooling to summarize features. Acting as a bridge between convolution 

and fully connected layers, it enables independent feature recognition, leading to reduced computational load.  

 

  3. Fully Connected Layer      

The Fully Connected (FC) layer connects neurons between different layers in a CNN, typically  

positioned before the output layer. Input from previous layers is flattened and passed to the FC layer for 

classification. Multiple FC layers allow for complex mathematical operations and enhance classification 

accuracy. These layers minimize human supervision in the CNN architecture.   

   

4. Dropout Layer   

To address overfitting in training datasets, dropout layers are employed in neural networks. Dropout  

randomly removes a portion of neurons during training, effectively reducing the model's size and complexity. 

For instance, setting a dropout of 0.3 means 30% of nodes are randomly dropped out from the neural network. 

This technique prevents overfitting by making the network more robust and simpler, ultimately improving model 

performance.   

   

5. Activation Functions   

Activation functions play a crucial role in CNN models, as they introduce non-linearity and determine  

which information should be transmitted forward in the network. Commonly used activation functions include  

ReLU, Softmax, tanH, and Sigmoid, each serving specific purposes. For binary classification CNN models,   

Sigmoid and Softmax functions are preferred, while Softmax is generally used for multi-class classification. 

Activation functions decide whether a neuron should be activated based on the input, thus influencing the 

network's predictive capabilities through mathematical operations.   

  

      6. SYSTEM IMPLEMENTATION   

6.1 DATA COLLECTION   

Each of the 43 folders in our dataset folder represents a different class. We iterate over all of the classes using the 

OS module, appending images and their labels to the data and labels list. To open picture content into an array, 

the PIL library is utilized. Finally, we organized all of the images and labels into lists (data and labels).To feed the 

model, we must turn the list into NumPy arrays. The train_test_split() method in the sklearn package is used to 

split training and testing data. To transform the labels in y_train and y_test into one-hot encoding, we utilize the 

to_categorical method from the Keras.utils package.   
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6.2 DATA PREPROCESSING   

1.Image Resizing: Resizing original images, typically with dimensions of 450x600 pixels, to a smaller size, such as 30x30 

pixels, is a crucial preprocessing step. This resizing reduces the computational burden, particularly for machine learning models 

with limited resources, while preserving essential details. By resizing images, we can train models more efficiently, leading to 

improved performance and faster computation.   

2.Normalization: Normalization is another essential preprocessing step that involves scaling raw image pixel values to a 

standardized range. Typically, raw pixel values range from 0 to 255. Normalization entails dividing each pixel value by 255, 

thereby scaling all values to a range between 0 and 1. This ensures consistency in the data format across the dataset, facilitating 

better model learning and faster training times. In our model, we employ the standard scaler technique for normalization to 

enhance model performance.   

3.Grayscale Conversion: Grayscale conversion is a preprocessing technique wherein colored images are transformed into 

grayscale representations. This process involves computing the weighted average of the RGB channels for each pixel, resulting 

in a single-channel image where pixel values represent gray intensity ranging from 0 to 255. Grayscale conversion simplifies 

images to focus on luminance information, which can aid in image processing tasks.   

6.3 MODEL TRAINING   

For convolution neural network model training the steps required are    Initialization: 

Initialize the CNN's weights and biases randomly.   

Forward Pass: Input data is fed forward through the network, passing through convolutional and pooling layers to extract 

features and reduce dimensionality.   

Prediction and Loss Calculation: Predictions are made based on the output layer's activation. Loss is calculated by comparing 

these predictions with the ground truth labels using a predefined loss function.   

Backward Pass (Backpropagation): Errors are propagated backward through the network, computing gradients of the loss 

function with respect to the model parameters.   

Parameter Updates (Optimization): Model parameters are updated using an optimization algorithm (e.g., stochastic gradient 

descent) to minimize the loss function. Regularization techniques may be applied to prevent overfitting.   

Iteration and Epochs: Repeat steps 0 for multiple batches of training data, completing one epoch. Continue for the specified 

number of epochs, updating the entire dataset.   

Validation and Evaluation: Periodically evaluate the model's performance on a separate validation dataset to monitor 

generalization. Metrics like accuracy and loss are computed.   

Completion and Model Deployment: Training concludes after the specified epochs. The final trained model is evaluated on 

a test dataset. Once satisfactory, it can be deployed for inference on new data.   
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     7.RESULTS AND DISCUSSIONS   

     7.1 Model Loss & Accuracy   

                                  

Fig-5: Model  Accuracy   

This graph visualizes the model's learning process over training epochs. The blue curve (training loss) shows how well the 

model performs on the training data as it learns. Ideally, this decreases as the model improves. The orange curve (validation 

loss) tracks performance on unseen validation data. It's crucial for preventing overfitting, where the model memorizes training 

data but struggles with new examples. In a successful training run, both curves should generally go down, indicating the model 

is learning effectively from the training data while still generalizing well to unseen data.   

   

 7.2 Sample Results   

    

    fig.sample outputs   
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       8. CONCLUSION   

The paper proposes a method for traffic sign recognition leveraging deep learning techniques, specifically a 

convolutional neural network (CNN) implemented using KerasThe paper proposes a method for traffic sign 

recognition leveraging deep learning techniques, specifically a convolutional neural network (CNN) 

implemented using Keras. The primary objective is to detect various types of traffic signs. Through image 

preprocessing and utilizing a dataset sourced from Kaggle, the method achieves effective detection, recognition, 

and classification of traffic signs. These results enable the identification of traffic signs, providing assistance to 

users in both manual and automatic driving modes. In manual mode, the results are displayed on the dashboard 

screen, while in automatic mode, the system aids safe driving by recognizing traffic signs for the car. Test results 

indicate that the method achieves a very high level of accuracy.   
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